What Are the Minimal QA Procedures to Guarantee a Good RT Treatment

Chapter

Abstract

The title of this chapter could be seen as a contradictio in terminis, in that one can never perform enough QA to safeguard quality of treatment and patient safety. On the other hand, QA procedures should find a balance between being simple and easy to use proportional to the workload and being sufficiently sensitive to detect errors that may occur during treatment delivery. Many good references exist on the subject, and in this chapter, only a short overview will be given touching some key issues. As both the treatment dose delivery and the accompanying image-guidance are equally important, QA procedures should also cover both issues.

Keywords

Quality assurance in radiotherapy Intensity-modulated radiotherapy Image-guided radiotherapy Safety 

References

  1. 1.
    Bortfeld T, Schmidt-Ullrich R, De Neve W, Wazer DE (2006) Image-guided IMRT. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  2. 2.
    Intensity Modulated Radiation Therapy Collaborative Working Group (2001) Intensity-modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51:880–914CrossRefGoogle Scholar
  3. 3.
    Ezzell G, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB, Xia P, Xiao Y, Xing L, Yu CX (2003) Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT subcommittee of the AAPM radiation therapy committee. Med Phys 30:2090–2115CrossRefGoogle Scholar
  4. 4.
    Ezzell G (2003) Quality assurance. When and what is enough for IMRT? In: Intensity-modulated radiation therapy. The state of the art, AAPM monograph no. 29. Medical Physics Publishing, Madison, pp 613–616Google Scholar
  5. 5.
    ESTRO Booklet on “Guidelines for the verification of IMRT” (2008), Eds. Mijnheer and Georg, ISBN 90-804532-9Google Scholar
  6. 6.
    Ibbott GS, Followill DS, Molineu HA, Lowenstein JR, Alvarez PE, Roll JE (2008) Challenges in credentialing institutions and participants in advanced technology multi-institutional clinical trials. Int J Radiat Oncol Biol Phys 71:S71–S75CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tomsej M, Marchesi V, Aletti P, the GORTEC physicists (2005) Validation of IMRT treatments in head and neck cancer through a European multicentric dosimetric study. Radiother Oncol 76:S40CrossRefGoogle Scholar
  8. 8.
    McDermott LN, Wendling M, Sonke J-J, van Herk M, Mijnheer BJ (2007) Replacing pre-treatment verification with in vivo EPID dosimetry for prostate IMRT. Int J Radiat Oncol Biol Phys 67:1568–1577CrossRefPubMedGoogle Scholar
  9. 9.
    Russo M, Piermattei A, Greco F, Azario L, Orlandini L, Zucca S, Cilla S, Menna S, Grusio M, Chiatti L, Fidanzio A (2015) Step-and-shoot IMRT by siemens beams: an EPID dosimetry verification during treatment. Technol Cancer Res Treat 15(4):535–545. doi: 10.1177/1533034615590962 CrossRefPubMedGoogle Scholar
  10. 10.
    Van Elmpt WJC, Nijsten SMJJG, Schiffeleers RFH, Dekker ALAJ, Mijnheer BJ, Lambin P, Minken AWH (2006) Monte Carlo based three-dimensional dose reconstruction method derived from portal dose images. Med Phys 33:2426–2434CrossRefPubMedGoogle Scholar
  11. 11.
    Verellen D, De Ridder M, Linthout N, Tournel K, Soete G, Storme G (2007) Innovations and advances in radiation technology. Nat Rev Cancer 7:949–960CrossRefPubMedGoogle Scholar
  12. 12.
    Sánchez-Doblado F, Hartmann GH, Pena J, Capote R, Paiusco M, Rhein B, Leal A, Lagares JI (2007) Uncertainty estimation in IMRT absolute dosimetry verification. Int J Radiat Oncol Biol Phys 68:301–310CrossRefPubMedGoogle Scholar
  13. 13.
    Crijns W, Maes F, van der Heide UA, Van den Heuvel F (2013) Calibrating page sized Gafchromic EBT3 films. Med Phys 40(1):012102. doi: 10.1118/1.4771960 CrossRefPubMedGoogle Scholar
  14. 14.
    Low DA, Dempsey JF (2003) Evaluation of the gamma dose distribution comparison method. Med Phys 30:2455–2464CrossRefPubMedGoogle Scholar
  15. 15.
    Budgell GJ, Perrin PA, Mott JHL, Fairfoul J, Mackay RI (2005) Quantitative analysis of patient-specific dosimetric IMRT verification. Phys Med Biol 50:103–119CrossRefPubMedGoogle Scholar
  16. 16.
    Thwaites DI (2013) Accuracy required and achievable in radiotherapy dosimetry: have modern technology and techniques changed our views? J Phys Conf Ser 444:012006. doi: 10.1088/1742-6596/444/1/012006 CrossRefGoogle Scholar
  17. 17.
    Linthout N, Verellen D, Tournel K, Reynders T, Duchateau M, Storme G (2007) Assessment of secondary patient motion induced by automated couch movement during on-line 6 dimensional repositioning in prostate cancer treatment. Radiother Oncol 83(2):168–174CrossRefPubMedGoogle Scholar
  18. 18.
    Bissonnette JP et al (2012) Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. Med Phys 39(4):1946–1963CrossRefPubMedGoogle Scholar
  19. 19.
    Yan D (2008) Developing quality assurance processes for image-guided adaptive radiation therapy. Int J Radiat Oncol Biol Phys 71(1):S28–S32CrossRefPubMedGoogle Scholar
  20. 20.
    Ford EC et al (2009) Evaluation of safety in a radiation oncology setting using failure mode and effects analysis. Int J Radiat Oncol Biol Phys 74(3):852–858CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Van den Boogaard J, Cuppen G, Roozen M, Duvivier M, Bijl M, Wessel R, Reijnders P (2009) Improvement of patient safety in Dutch radiotherapy, by benchmarking data of incidence analyses (PRISMA) between 17 radiotherapy departments. Radiother Oncol 92(Suppl 1):S43Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.Departement of Radiotherapy PhysicsGZA Ziekenhuizen Sint Augustinus, Iridium KankernetwerkAntwerpBelgium

Personalised recommendations