Skip to main content

GaN-Based Nanowire Transistors

  • Chapter
  • First Online:
Book cover Power GaN Devices

Part of the book series: Power Electronics and Power Systems ((PEPS))

  • 6612 Accesses

Abstract

The outstanding electronic properties of GaN semiconductors, such as large breakdown voltage, high critical electric field, high electron mobility and saturation velocity, high-temperature operation, make them an ideal material for power switches, converters, and RF power amplifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu W, Xie P, Lieber CM (2008) Nanowire transistor performance limits and applications. IEEE Trans Electron Device 55(11):2859–2876

    Article  Google Scholar 

  2. Matioli E, Palacios T (2015) Room-temperature ballistic transport in III-nitride heterostructures. Nano Lett 15(2):1070–1075

    Article  Google Scholar 

  3. Mastro M, Kim HY, Ahn J, Kim J, Jennifer H, Charles E Jr (2010) Quasi-ballistic hole transport in an AlGaN/GaN nanowire. ECS Trans 28(4):47–52

    Google Scholar 

  4. Kim J-R, Kim B-K, Lee IJ, Kim J-J, Kim J, Lyu SC, Lee CJ (2004) Temperature-dependent single-electron tunneling effect in lightly and heavily doped GaN nanowires. Phys Rev B 69:233303

    Google Scholar 

  5. Polenta L, Rossi M, Cavallini A, Calarco R, Marso M, Meijers R, Richter T, Stoica T, Luth H (2008) ACS Nano 2:287

    Article  Google Scholar 

  6. Calarco R, Marso M, Richter T, Aykanat AI, Meijers R, Hart AVD, Stoica T, Luth H (2005) Nano Lett 5:981

    Google Scholar 

  7. Sanford NA, Blanchard PT, Bertness KA, Mansfield L, Schlager JB, Sanders AW, Roshko A, Burton BB, George SM (2010) J Appl Phys 107:034318

    Article  Google Scholar 

  8. Simpkins BS, Mastro MA, Eddy CR Jr, Pehrsson PE (2008) J Appl Phys 103:104313

    Article  Google Scholar 

  9. Matioli E, Lu B, Palacios T (2013) Ultralow leakage current AlGaN/GaN Schottky diodes with 3-D anode structure. IEEE Trans Electron Device 60:3365

    Article  Google Scholar 

  10. Azize M, Palacios T (2011) Top-down fabrication of AlGaN/GaN nanoribbons. Appl Phys Lett 98:042103

    Article  Google Scholar 

  11. Li Y, Xiang J, Qian F, Gradecak S, Wu Y, Yan H, Blom DA, Lieber CM (2006) Dopant-free GaN/AlN/AlGaN radial nanowire heterostructure as high electron mobility transistors. Nano Lett 6(7):1468–1473

    Article  Google Scholar 

  12. Duan X, Lieber CM (2000) Laser-assisted catalytic growth of single crystal GaN nanowires. J Am Chem Soc 122:188–189

    Article  Google Scholar 

  13. Peng HY, Wang N, Zhou XT, Zheng YF, Lee CS, Lee ST (2002) Control of growth orientation of GaN nanowires. Chem Phys Lett 359:241–245

    Google Scholar 

  14. Kim H-M, Kim DS, Park YS, Kim DY, Kang TW, Chung KS (2002) Growth of GaN nanorods by a hydride vapor phase epitaxy method. Adv Mater 14:991–993

    Article  Google Scholar 

  15. Bertness KA (2011) Senior member, IEEE. In: Sanford NA, Davydov AV (eds) GaN nanowires grown by molecular beam epitaxy. IEEE J Select Top Quant Electron 17(4)

    Google Scholar 

  16. Cheng GS, Zhang LD, Zhu Y, Fei GT, Li L (1999) Large-scale synthesis of single crystalline gallium nitride nanowires. Appl Phys Lett 75:16

    Article  Google Scholar 

  17. Songmuang R, Monroy E (2013) GaN-based single-nanowire devices, on III-Nitride semiconductors and their modern devices. In: B Gil (ed), 01/2013. Oxford University Press, USA, pp 289–364

    Google Scholar 

  18. Fortuna SA, Li X (2010) Metal-catalyzed semiconductor nanowires: a review on the control of growth directions. Semicond Sci Technol 25:024005

    Google Scholar 

  19. Glas F (2006) Phys Rev B 74:121302

    Article  Google Scholar 

  20. Yoshizawa M, Kikuchi A, Mori M, Fujita N, Kishino K (1997) Japan. J Appl Phys 2(36):L459

    Article  Google Scholar 

  21. Sekiguchi H, Nakazato T, Kikuchi A, Kishino K (2006) J Cryst Growth 300:259

    Article  Google Scholar 

  22. Calleja E, Sanchez-Garcia MA, Sanchez FJ, Calle F, Naranjo FB, Munoz E, Molina SI, Sanchez AM, Pacheco FJ, Garcia R (1999) J Cryst Growth 201/202:296

    Google Scholar 

  23. Tchernycheva M et al (2007) Nanotechnology 18:385306

    Article  Google Scholar 

  24. Songmuang R, Landre O, Daudin B (2007) Appl Phys Lett 91:251902

    Article  Google Scholar 

  25. Ohi K, Hashizume T (2009) Drain current stability and controllability of threshold voltage and subthreshold current in a multi-mesa-channel AlGaN/GaN high electron mobility transistor. Jpn J Appl Phys 48:081002

    Article  Google Scholar 

  26. Yu H, Xiangfeng D, Yi C, Lieber CM (2002) Gallium nitride nanowire nanodevices. Nano Lett 2(2):101–104

    Article  Google Scholar 

  27. Stern E et al (2005) Electrical characterization of single GaN nanowires. Nanotechnology 16:2941

    Google Scholar 

  28. Sundaram VS, Mizel A (2004) Surface effects on nanowire transport: a numerical investigation using the Boltzmann equation. J Phys Condens Matter 16:4697

    Google Scholar 

  29. Songmuang R, Katsaros G, Monroy E, Spathis P, Bougerol C, Mongillo M, De Franceschi S (2010) Quantum transport in GaN/AlN double-barrier heterostructure nanowires. Nano Lett 10(9):3545–3550

    Article  Google Scholar 

  30. Vandenbrouck S, Madjour K, Théron D, Dong Y, Li Y, Lieber CM, Gaquiere C (2009) 12 GHz FMAX GaN/AlN/AlGaN Nanowire MISFET. IEEE Electron Device Lett 30:4

    Article  Google Scholar 

  31. Chen CP et al (2009) Label-free dual sensing of DNA molecules using GaN nanowires. Anal Chem 81(1):36–42

    Article  Google Scholar 

  32. Huang X, Lee WC, Kuo C, Hu C et al (1999) Sub 50-nm FinFET: PMOS. In: IEDM Technical Digest, pp 67–70

    Google Scholar 

  33. Doyle BS, Datta S, Doczy M, Hareland S, Jin B, Kavalieros J, Linton T, Murthy A, Rios R, Chau R (2003) High performance fully-depleted tri-gate CMOS transistors. IEEE Electron Device Lett 24:263–265

    Article  Google Scholar 

  34. Kato S, Satoh Y, Sasaki H, Masayuki I, Yoshida S (2007) C-doped GaN buffer layers with high breakdown voltages for high-power operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE. J Crystal Growth 298:831–834

    Article  Google Scholar 

  35. Zimmermann T, Cao Y, Guo J, Luo X, Jena D, Xing H (2009) Top-down AlN/GaN enhancement- and depletion-mode nanoribbon HEMTs. In: IEEE device research conference (DRC) Digest, pp 129–130

    Google Scholar 

  36. Lu B, Matioli E, Palacios T (2012) Tri-gate normally-off GaN power MISFET. IEEE Electron Device Lett 33(3):360–362

    Article  Google Scholar 

  37. Lu B, Saadat OI, Palacios T (2010) High-performance integrated dual-gate AlGaN/GaN enhancement-mode transistor. IEEE Electron Device Lett 31:990–992

    Article  Google Scholar 

  38. Lu B (2013) AlGaN/GaN-based power semiconductor switches. PhD Dissertation, Massachusetts Institute of Technology

    Google Scholar 

  39. Ambacher O, Foutz B, Smart J, Shealy JR, Weimann NG, Chu K, Murphy M, Sierakowski AJ, Schaff WJ, Eastman LF, Dimitrov R, Mitchell A, Stutzmann (2000) Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J Appl Phys 87(1), pp 334–344

    Google Scholar 

  40. Azize M, Hsu AL, Saadat OI, Smith MJ, Gao X, Guo S, Gradecak S, Palacios T (2011) High-electron-mobility transistors based on InAlN/GaN nanoribbons. IEEE Electron Device Lett 32(12):1680–1682

    Article  Google Scholar 

  41. Jones EJ, Azize M, Smith MJ, Palacios T, Gradecak S (2012) Correlating stress generation and sheet resistance in InAlN/GaN nanoribbon high electron mobility transistors. Appl Phys Lett 101:113101

    Article  Google Scholar 

  42. Dreyer CE, Janotti A, Van de Walle CG (2013) Effects of strain on the electron effective mass in GaN and AlN. Appl Phys Lett 102:142105

    Article  Google Scholar 

  43. Dora Y, Chakraborty A, McCarthy L, Keller S, DenBaars SP, Mishra U (2006) High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates. IEEE Electron Device Letters 27(9):713–715

    Article  Google Scholar 

  44. Palacios T, Rajan S, Chakraborty A, Heikman S, Keller S, DenBaars SP, Mishra UK (2005) Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs. IEEE Trans Electron Device 52(10):2117–2123

    Article  Google Scholar 

  45. DiSanto DW, Bolognesi CR (2006) At-bias extraction of access parasitic resistances in AlGaN/GaN HEMTs: impact on device linearity and channel electron velocity. IEEE Trans Electron Device 53(12):2914–2919

    Article  Google Scholar 

  46. Trew RJ, Liu Y, Bilbro GL, Kuang W, Vetury R, Shealy JB (2006) Nonlinear source resistance in high-voltage microwave AlGaN/GaN HFETs. IEEE Trans Microw Theory Tech 54(5):2061–2067

    Article  Google Scholar 

  47. Shinohara K, Regan D, Corrion A, Brown D, Tang Y, Wong J, Candia G, Schmitz A, Fung H, Kim S, Micovic M (2012) Self-aligned-gate GaN HEMTs with heavily-doped n+-GaN ohmic contacts to 2DEG. In: Proceedings of the IEEE international electron devices meeting, pp 617–620

    Google Scholar 

  48. Lee DS, Wang H, Hsu A, Azize M, Laboutin O, Cao Y, Johnson W, Beam E, Ketterson A, Schuette M, Saunier P, Palacios T (2013) High linearity nanowire channel GaN HEMTs. In: Device Research Conference (DRC) 71st Annual, Notre Dame pp 195–196

    Google Scholar 

  49. Greenberg DR, del Alamo JA (1996) Nonlinear source and drain resistance in recessed-gate heterostructure field-effect transistors. IEEE Trans Electron Device 43(8):1304–1306

    Article  Google Scholar 

  50. Lee DS (2014) Deeply-scaled GaN high electron mobility transistors for RF applications. Doctoral dissertation, Massachusetts Institute of Technology

    Google Scholar 

  51. Motayed A, Sharma A, Jones KA, Derenge MA, Iliadis AA, Mohammad SN (2004) Electrical characteristics of AlxGa1 − xN Schottky diodes prepared by a two-step surface treatment. J Appl Phys 96(6):3286–3295

    Article  Google Scholar 

  52. Lee J-G, Park B-R, Cho C-H, Seo K-S, Cha H-Y (2013) Low turn-on voltage AlGaN/GaN-on-Si rectifier with gated ohmic anode. IEEE Electron Device Lett 34(2):214–216

    Google Scholar 

  53. Yao Y, Zhong J, Zheng Y, Yang F, Ni Y, He Z, Shen Z, Zhou G, Wang S, Zhang J, Li J, Zhou D, Zhisheng W, Zhang B, Liu Y (2015) Current transport mechanism of AlGaN/GaN Schottky barrier diode with fully recessed Schottky anode. Jpn J Appl Phys 54:011001

    Article  Google Scholar 

  54. Hashizume T, Ootomo S, Oyama S, Konishi M, Hasegawa H (2001) Chemistry and electrical properties of surfaces of GaN and GaN/AlGaN heterostructures. J Vac Sci Technol, B 19(4):1675–1681

    Article  Google Scholar 

  55. Kim JH, Choi HG, Ha M-W, Song HJ, Roh CH, Lee JH, Park JH, Hahn C-K (2010) Effects of nitride-based plasma pretreatment prior to SiNx passivation in AlGaN/GaN high-electronmobility transistors on silicon substrates. Jpn J Appl Phys 49:04DF05-1–04DF05-3

    Google Scholar 

  56. Dimitrov R, Tilak V, Yeo W, Green B, Kim H, Smart J, Chumbes E, Shealy JR, Schaff W, Eastman LF, Miskys C, Ambacher O, Stutzmann M (2000) Influence of oxygen and methane plasma on the electrical properties of undoped AlGaN/GaN heterostructures for high power transistors. Solid-State Electron 44(8):1361–1365

    Article  Google Scholar 

  57. Ha WJ, Chhajed S, Oh SJ, Hwang S, Kim JK, Lee J-H, Kim K-S (2012) Analysis of the reverse leakage current in AlGaN/GaN Schottky barrier diodes treated with fluorine plasma. Appl Phys Lett 100(13):132104-1–132104-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elison Matioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matioli, E., Lu, B., Piedra, D., Palacios, T. (2017). GaN-Based Nanowire Transistors. In: Meneghini, M., Meneghesso, G., Zanoni, E. (eds) Power GaN Devices. Power Electronics and Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-43199-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43199-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43197-0

  • Online ISBN: 978-3-319-43199-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics