Utility-Based Smartphone Energy Consumption Optimization for Cloud-Based and On-Device Application Uses

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9512)


As the use of smartphones and its applications continue their rapid growth, prolonging the smartphone battery lifetime has become one of the main concerns for smartphone users if re-charging is not possible. In this paper, we show that, by taking into account the user preferences, the energy consumption of smartphones can be adjusted to maximize the user utility. The user preferences are reflected through the type of application uses, the perceived costs of energy allocation for the different types of applications, and the perceived value of energy remaining in the battery of the smartphone. In particular, we optimize the energy consumption of smartphones through the use of a utility-based energy consumption optimization model, which we developed. We demonstrate the workings of our model by applying it to a simple scenario, in which we vary the perceived value of energy remaining in the smartphone battery and the user’s perceived costs for energy consumed by the two types of application uses: cloud-based application uses and on-device application uses. Our results show that, by letting users express their preferences, users can allocate the remaining smartphone energy such that it maximizes their utilities.


Smartphones Apps Energy consumption optimization Utility function Usage behavior Cloud computing Off-loading Application classification Energy allocation 


  1. 1.
    Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture, applications, and approaches. Wireless Commun. Mobile Comput. 13(18), 1587–1611 (2013)CrossRefGoogle Scholar
  2. 2.
    Mobiforge: Global mobile statistics 2014 part A: mobile subscribers; handset market share; mobile operators (2015).
  3. 3.
    Robinson, S.: Cellphone energy gap: desperately seeking solutions. Strategy analytics. Technology report, Chicago, IL, USA (2009)Google Scholar
  4. 4.
    Tarkoma, S., Siekkinen, M., Lagerspetz, E., Xiao, Y.: Smartphone Energy Consumption: Modeling and Optimization. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  5. 5.
    Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.: Diversity in smartphone usage. In: 8th International Conference on Mobile Systems, Applications, and Services, pp. 179–194. ACM (2010)Google Scholar
  6. 6.
    Pasricha, S., Donohoo, B.K., Ohlsen, C.: A middleware framework for application-aware and user-specific energy optimization in smart mobile devices. Pervasive Mobile Comput. 20, 47–63 (2015)CrossRefGoogle Scholar
  7. 7.
    Shye, A., Scholbrock, B., Memik, G.: Into the wild: studying real user activity patterns to guide power optimizations for mobile architectures. In: 42nd Annual IEEE/ACM International Symposium on Microarchitecture, pp. 168–178 (2009)Google Scholar
  8. 8.
    Kang, J.-M., Park, C.-K., Seo, S.-S., Choi, M.-J., Hong, J.W.-K.: User-centric prediction for battery lifetime of mobile devices. In: Ma, Y., Choi, D., Ata, S. (eds.) APNOMS 2008. LNCS, vol. 5297, pp. 531–534. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Kang, J.-M., Seo, S.-S., Hong, J.W.K.: Usage pattern analysis of smartphones. In: 13th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 1–8. IEEE (2011)Google Scholar
  10. 10.
    Demumieux, R., Losquin, P.: Gather customer’s real usage on mobile phones. In: 7th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 267–270. ACM (2005)Google Scholar
  11. 11.
    Froehlich, J., Chen, M.Y., Consolvo, S., Harrison, B., Landay, J.A.: MyExperience: a system for in situ tracing and capturing of user feedback on mobile phones. In: 5th International Conference on Mobile Systems, Applications and Services, pp. 57–70. ACM (2007)Google Scholar
  12. 12.
    Oliver, E.: The challenges in large-scale smartphone user studies. In: 2nd ACM International Workshop on Hot Topics in Planet-Scale Measurement, p. 5. ACM (2010)Google Scholar
  13. 13.
    Banerjee, N., Rahmati, A., Corner, M.D., Rollins, S., Zhong, L.: Users and batteries: interactions and adaptive energy management in mobile systems. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 217–234. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Rahmati, A., Qian, A., Zhong, L.: Understanding human-battery interaction on mobile phones. In: 9th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 265–272. ACM (2007)Google Scholar
  15. 15.
    Rahmati, A., Zhong, L.: Human–battery interaction on mobile phones. Pervasive Mobile Comput. 5(5), 465–477 (2009)CrossRefGoogle Scholar
  16. 16.
    Ferreira, D., Dey, A.K., Kostakos, V.: Understanding human-smartphone concerns: a study of battery life. In: Lyons, K., Hightower, J., Huang, E.M. (eds.) Pervasive 2011. LNCS, vol. 6696, pp. 19–33. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Oliver, E.A., Keshav, S.: An empirical approach to smartphone energy level prediction. In: 13th International Conference on Ubiquitous Computing, pp. 345–354. ACM (2011)Google Scholar
  18. 18.
    Heikkinen, M.V., Nurminen, J.K., Smura, T., Hämmäinen, H.: Energy efficiency of mobile handsets: measuring user attitudes and behavior. Telematics Inf. 29(4), 387–399 (2012)CrossRefGoogle Scholar
  19. 19.
    Ferreira, D., Ferreira, E., Goncalves, J., Kostakos, V., Dey, A.K.: Revisiting human-battery interaction with an interactive battery interface. In: ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 563–572. ACM (2013)Google Scholar
  20. 20.
    Vallina-Rodriguez, N., Hui, P., Crowcroft, J., Rice, A.: Exhausting battery statistics: understanding the energy demands on mobile handsets. In: 2nd ACM SIGCOMM Workshop on Networking, Systems, and Applications on Mobile Handhelds, pp. 9–14. ACM (2010)Google Scholar
  21. 21.
    Ravi, N., Scott, J., Han, L., Iftode, L.: Context-aware battery management for mobile phones. In: 6th International Conference on Pervasive Computing and Communications (PerCom 2008), pp. 224–233. IEEE (2008)Google Scholar
  22. 22.
    Athukorala, K., Lagerspetz, E., von Kügelgen, M., Jylhä, A., Oliner, A.J., Tarkoma, S., Jacucci, G.: How carat affects user behavior: implications for mobile battery awareness applications. In: 32nd Conference on Human Factors in Computing Systems, pp. 1029–1038. ACM (2014)Google Scholar
  23. 23.
    Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In: USENIX Annual Technical Conference, p. 14 (2010)Google Scholar
  24. 24.
    Falaki, H., Lymberopoulos, D., Mahajan, R., Kandula, S., Estrin, D.: A first look at traffic on smartphones. In: 10th SIGCOMM Conference on Internet Measurement, pp. 281–287. ACM (2010)Google Scholar
  25. 25.
    Brenes, A.: Cobb-Douglas Utility Function (2011)Google Scholar
  26. 26.
    Yan, B., Shi, F., Yu, R.-Q.: Exploring utility function in utility management: an evaluating method of library preservation. SpringerPlus 2(1), 1–11 (2013)CrossRefGoogle Scholar
  27. 27.
    Hasan, M.Z., Kamil, A.A., Mustafa, A., Baten, M.A.: A Cobb Douglas stochastic frontier model on measuring domestic bank efficiency in Malaysia. PLoS ONE 7(8), 1–5 (2012)CrossRefGoogle Scholar
  28. 28.
    Hayes, R.M.: An application of the Cobb-Douglas model to the association of research libraries. Library Inf. Sci. Res. 5(3), 291–325 (1983)Google Scholar
  29. 29.
    Allen, W.B., Doherty, N., Mansfield, K.W.E.: Managerial Economics: Theory, Applications, and Cases. Norton, New York (2005)Google Scholar
  30. 30.
    Varian, H.R.: Intermediate Microeconomics, 9th edn. Norton, New York (2014)Google Scholar
  31. 31.
    Altmann, J., Varaiya, P.: INDEX project: user support for buying QoS with regard to user’s preferences. In: 6th IEEE/IFIP International Workshop on Quality of Service (IWQOS), pp. 101–104 (1998)Google Scholar
  32. 32.
    Altmann, J., Rupp, B., Varaiya, P.: Internet demand under different pricing schemes. In: ACM Conference on Electronic Commerce (EC) (1999)Google Scholar
  33. 33.
    Altmann, J., Chu, K.: A proposal for a flexible service plan that is attractive to users and internet service providers. In: IEEE Conference on Computer Communications (InfoCom) (2001)Google Scholar
  34. 34.
    Altmann, J., Rohitratana, J.: Software resource management considering the interrelations between explicit cost, energy consumption, and implicit cost: a decision support model for IT managers. In: Multikonferenz Wirtschaftsinformatik (MKWI) (2010)Google Scholar
  35. 35.
    Altmann, J., Rupp, B., Varaiya, P.: Effects of pricing on internet user behavior. NetNomics 3(1), 67–84 (2000)CrossRefGoogle Scholar
  36. 36.
    Kim, J., Ilon, L., Altmann, J.: Adapting smartphones as learning technology in a Korean university. J. Integr. Des. Process Sci. 17(1), 5–16 (2013)Google Scholar
  37. 37.
    Haile, N., Altmann, J.: Estimating the value obtained from using a software service platform. In: Altmann, J., Vanmechelen, K., Rana, O.F. (eds.) GECON 2013. LNCS, vol. 8193, pp. 244–255. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  38. 38.
    Haile, N., Altmann, J.: Value creation in software service platforms. In: Future Generation Computer Systems. Elsevier (2015). doi: 10.1016/j.future.2015.09.029 Google Scholar
  39. 39.
    Haile, N., Altmann, J.: Structural analysis of value creation in software service platforms. Electron. Markets (2015). doi: 10.1007/s12525-015-0208-8 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Technology Management, Economics and Policy Program College of EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations