Skip to main content

Majority Normal Form Representation and Satisfiability

  • Chapter
  • First Online:
New Data Structures and Algorithms for Logic Synthesis and Verification
  • 1077 Accesses

Abstract

In this chapter, we focus on a novel two-level logic representation. We define Majority Normal Form (MNF), as an alternative to the traditional Disjunctive Normal Form (DNF) and the Conjunctive Normal Form (CNF). After a brief investigation on the MNF expressive power, we study the problem of MNF-SATisfiability (MNF-SAT). We prove that MNF-SAT is NP-complete, as its CNF-SAT counterpart. However, we show practical restrictions on MNF formula whose satisfiability can be decided in polynomial time. We finally propose a simple algorithm to solve MNF-SAT, based on the intrinsic functionality of two-level majority logic. Although an automated MNF-SAT solver is still under construction, manual examples already demonstrate promising opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The tautology check problem has been introduced in Chap. 4 of this book.

  2. 2.

    The final majority operator in an MNF is the one in the top layer of the two-level representation form, thus computing the output MNF function.

References

  1. L. Amaru, P.-E. Gaillardon, G. De Micheli, BDS-MAJ: A BDD-based logic synthesis tool exploiting majority logic decomposition, in Proceedings of the DAC (2013)

    Google Scholar 

  2. L. Amaru, P.-E. Gaillardon, G. De Micheli, Majority inverter graphs, in Proceedings of the DAC (2014)

    Google Scholar 

  3. G. Yang, W.N.N. Hung, X. Song, M. Perkowski, Majority-based reversible logic gates. Theor. Comput. Sci. 334, 259–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Pospesel, Introduction to Logic: Propositional Logic (Pearson, New York, 1999)

    Google Scholar 

  5. T. Sasao, Switching Theory for Logic Synthesis (Springer, Heidelberg, 1999)

    Book  MATH  Google Scholar 

  6. S. Cook, The complexity of theorem-proving procedures, in Proceedings of ACM Symposium on Theory of Computing (1971)

    Google Scholar 

  7. A. Biere, M. Heule, H. van Maaren, T. Walsh, Handbook of Satisfiability (IOS Press, Amsterdam, 2009)

    Google Scholar 

  8. K.J. Chen et al., InP-based high-performance logic elements using resonant-tunneling devices. IEEE Electr. Dev. Lett. 17(3), 127–129 (1996)

    Article  Google Scholar 

  9. M. Krause, P. Pudlak, On the computational power of depth-2 circuits with threshold and modulo gates. Theor. Comput. Sci. 174, 137–156 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. A.A. Sherstov, Separating AC 0 from depth-2 majority circuits, Proceedings of the STOC (2007)

    Google Scholar 

  11. N. Een, N. Sorensson, MiniSat - A SAT Solver with Conflict-Clause Minimization, SAT (2005)

    Google Scholar 

  12. N. Een, A. Mishchenko, N. Sorensson, Applying Logic Synthesis for Speeding Up SAT, SAT (2007)

    Google Scholar 

  13. R.E. Bryant, Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C–35, 677–691 (1986)

    Article  MATH  Google Scholar 

  14. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W. H. Freeman, San Francisco, 1979)

    MATH  Google Scholar 

  15. H.R. Lewis, Satisfiability problems for propositional calculi. Math. Syst. Theory 13, 45–53 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Impagliazzo, A Satisfiability Algorithm for Sparse Depth Two Threshold Circuits, Arxiv (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Gaetano Amaru .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amaru, L.G. (2017). Majority Normal Form Representation and Satisfiability. In: New Data Structures and Algorithms for Logic Synthesis and Verification. Springer, Cham. https://doi.org/10.1007/978-3-319-43174-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43174-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43173-4

  • Online ISBN: 978-3-319-43174-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics