Skip to main content

Sirtuins and Stress Response in Skin Cancer, Aging, and Barrier Function

  • Chapter
  • First Online:
Skin Stress Response Pathways
  • 1184 Accesses

Abstract

Sirtuins (SIRT1-7) are mammalian counterparts of the yeast silent information regulator 2 (Sir2) and are a family of NAD-dependent protein deacetylases and ADP ribosyltransferases. Sirtuins regulate numerous pathways in metabolism, aging and cancer . They are critical modulators in the cellular response to metabolic, oxidative, or genotoxic stress. Recent advances have demonstrated the pivotal role of sirtuin proteins in aging and a wide range of diseases including cancer in many organs. Skin is the essential barrier protecting organisms against environmental insults and minimizing water loss from the body. New evidence in mouse models and in vitro systems has illustrated that sirtuins have important roles in skin physiology, in the barrier function, aging, and diseases such as skin cancer. This review summarizes recent advances in understanding how sirtuins regulate the skin stress response in skin cancer, aging, and barrier integrity at the molecular, cellular, and organismal levels, and in how modulating sirtuins may help prevent or treat skin cancer, skin barrier defects, and other skin diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avivar-Valderas A, Salas E, Bobrovnikova-Marjon E, Diehl JA, Nagi C, Debnath J, Aguirre-Ghiso JA (2011) PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol Cell Biol 31:3616–3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aymard E, Barruche V, Naves T, Bordes S, Closs B, Verdier M, Ratinaud MH (2011) Autophagy in human keratinocytes: an early step of the differentiation? Exp Dermatol 20:263–268

    Article  CAS  PubMed  Google Scholar 

  • Aziz MH, Reagan-Shaw S, Wu J, Longley BJ, Ahmad N (2005) Chemoprevention of skin cancer by grape constituent resveratrol: relevance to human disease? FASEB J 19:1193–1195

    CAS  PubMed  Google Scholar 

  • Baohua Y, Li L (2012) Effects of SIRT6 silencing on collagen metabolism in human dermal fibroblasts. Cell Biol Int 36:105–108

    Article  PubMed  Google Scholar 

  • Bause AS, Matsui MS, Haigis MC (2013) The protein deacetylase SIRT3 prevents oxidative stress-induced keratinocyte differentiation. J Biol Chem 288:36484–36491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435

    Article  CAS  PubMed  Google Scholar 

  • Blander G, Bhimavarapu A, Mammone T, Maes D, Elliston K, Reich C, Matsui MS, Guarente L, Loureiro JJ (2009) SIRT1 promotes differentiation of normal human keratinocytes. J Invest Dermatol 129:41–49

    Article  CAS  PubMed  Google Scholar 

  • Boily G, He XH, Pearce B, Jardine K, McBurney MW (2009) SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene 28:2882–2893

    Article  CAS  PubMed  Google Scholar 

  • Bowden GT (2004) Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nat Rev Cancer 4:23–35

    Article  CAS  PubMed  Google Scholar 

  • Brooks CL, Gu W (2009) How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer 9:123–128

    Article  CAS  PubMed  Google Scholar 

  • Cao C, Lu S, Kivlin R, Wallin B, Card E, Bagdasarian A, Tamakloe T, Wang WJ, Song X, Chu WM et al (2009) SIRT1 confers protection against UVB- and H2O2-induced cell death via modulation of p53 and JNK in cultured skin keratinocytes. J Cell Mol Med 13:3632–3643

    Article  PubMed  Google Scholar 

  • Chalkiadaki A, Guarente L (2015) The multifaceted functions of sirtuins in cancer. Nat Rev Cancer 15:608–624

    Article  CAS  PubMed  Google Scholar 

  • Cleaver JE (2005) Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer 5:564–573

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira RM, Sarkander J, Kazantsev AG, Outeiro TF (2012) SIRT2 as a Therapeutic Target for Age-Related Disorders. Front Pharmacol 3:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng CX (2009) SIRT1, is it a tumor promoter or tumor suppressor? Int J Biol Sci 5:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominy JE Jr, Lee Y, Jedrychowski MP, Chim H, Jurczak MJ, Camporez JP, Ruan HB, Feldman J, Pierce K, Mostoslavsky R et al (2012) The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol Cell 48:900–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias PM (2008) Skin barrier function. Curr Allergy Asthma Rep 8:299–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias PM, Schmuth M (2009) Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Curr Opin Allergy Clin Immunol 9:437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias PM, Wakefield JS (2011) Therapeutic implications of a barrier-based pathogenesis of atopic dermatitis. Clin Rev Allergy Immunol 41:282–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan W, Luo J (2010) SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol Cell 39:247–258

    Article  CAS  PubMed  Google Scholar 

  • Feng XX, Luo J, Liu M, Yan W, Zhou ZZ, Xia YJ, Tu W, Li PY, Feng ZH, Tian DA (2015) Sirtuin 6 promotes transforming growth factor-beta1/H2O2/HOCl-mediated enhancement of hepatocellular carcinoma cell tumorigenicity by suppressing cellular senescence. Cancer Sci 106:559–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarente L (2013) Calorie restriction and sirtuins revisited. Genes Dev 27:2072–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy GP Jr, Machlin SR, Ekwueme DU, Yabroff KR (2015) Prevalence and costs of skin cancer treatment in the U.S., 2002–2006 and 2007–2011. Am J Prev Med 48:183–187

    Article  PubMed  Google Scholar 

  • Haigis MC, Guarente LP (2006) Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921

    Article  CAS  PubMed  Google Scholar 

  • Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, Serrano M (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 1:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin H, He R, Oyoshi M, Geha RS (2009) Animal models of atopic dermatitis. J Invest Dermatol 129:31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing E, Gesta S, Kahn CR (2007) SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab 6:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaidi A, Weinert BT, Choudhary C, Jackson SP (2010) Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329:1348–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221

    Article  CAS  PubMed  Google Scholar 

  • Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Ongaigui KC, Boxer LD, Chang HY et al (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136:62–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos A, Vazquez-Ortiz G, Jeong WI, Park O, Ki SH et al (2010) Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab 12:224–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Cho KH, Lee JH, Chang MS, Cho S (2012) Intratumoral mast cell number is negatively correlated with tumor size and mitosis in dermatofibrosarcoma protuberans. Exp Dermatol 21:559–561

    Article  PubMed  Google Scholar 

  • Kim KS, Park HK, Lee JW, Kim YI, Shin MK (2015) Investigate correlation between mechanical property and aging biomarker in passaged human dermal fibroblasts. Microsc Res Tech 78:277–282

    Article  CAS  PubMed  Google Scholar 

  • Lefort K, Brooks Y, Ostano P, Cario-Andre M, Calpini V, Guinea-Viniegra J, Albinger-Hegyi A, Hoetzenecker W, Kolfschoten I, Wagner EF et al (2013) A miR-34a-SIRT6 axis in the squamous cell differentiation network. EMBO J 32:2248–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Xie QR, Wang B, Shao J, Zhang T, Liu T, Huang G, Xia W (2013). Inhibition of SIRT6 in prostate cancer reduces cell viability and increases sensitivity to chemotherapeutics. Protein Cell 4(9):702–710

    Google Scholar 

  • Lombard DB, Schwer B, Alt FW, Mostoslavsky R (2008) SIRT6 in DNA repair, metabolism and ageing. J Intern Med 263:128–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science 332:1443–1446

    Article  CAS  PubMed  Google Scholar 

  • Mao Z, Tian X, Van Meter M, Ke Z, Gorbunova V, Seluanov A (2012) Sirtuin 6 (SIRT6) rescues the decline of homologous recombination repair during replicative senescence. Proc Natl Acad Sci USA 109:11800–11805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquardt JU, Fischer K, Baus K, Kashyap A, Ma S, Krupp M, Linke M, Teufel A, Zechner U, Strand D et al (2013) Sirtuin-6-dependent genetic and epigenetic alterations are associated with poor clinical outcome in hepatocellular carcinoma patients. Hepatology 58:1054–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy JT, Pelle E, Dong K, Brahmbhatt K, Yarosh D, Pernodet N (2013) Effects of ozone in normal human epidermal keratinocytes. Exp Dermatol 22:360–361

    Article  CAS  PubMed  Google Scholar 

  • McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL et al (2009) SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY) 1:109–121

    Article  CAS  Google Scholar 

  • Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel M, Torok N, Godbout MJ, Lussier M, Gaudreau P, Royal A, Germain L (1996) Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci 109(Pt 5):1017–1028

    CAS  PubMed  Google Scholar 

  • Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC et al (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min L, Ji Y, Bakiri L, Qiu Z, Cen J, Chen X, Chen L, Scheuch H, Zheng H, Qin L et al (2012) Liver cancer initiation is controlled by AP-1 through SIRT6-dependent inhibition of survivin. Nat Cell Biol 14:1203–1211

    Article  CAS  PubMed  Google Scholar 

  • Ming M, Shea CR, Guo X, Li X, Soltani K, Han W, He YY (2010) Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C. Proc Natl Acad Sci USA 107:22623–22628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming M, Han W, Zhao B, Sundaresan NR, Deng CX, Gupta MP, He YY (2014a) SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer. Cancer Res. In press

    Google Scholar 

  • Ming M, Qiang L, Zhao B, He YY (2014b) Mammalian SIRT2 inhibits keratin 19 expression and is a tumor suppressor in skin. Exp Dermatol 23:207–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming M, Soltani K, Shea CR, Li X, He YY (2015a) Dual role of SIRT1 in UVB-induced skin tumorigenesis. Oncogene 34:357–363

    Article  CAS  PubMed  Google Scholar 

  • Ming M, Zhao B, Shea CR, Shah P, Qiang L, White SR, Sims DM, He YY (2015b) Loss of sirtuin 1 (SIRT1) disrupts skin barrier integrity and sensitizes mice to epicutaneous allergen challenge. J Allergy Clin Immunol 135(936–945):e934

    Google Scholar 

  • Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM et al (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:315–329

    Article  CAS  PubMed  Google Scholar 

  • Nakai K, Yoneda K, Hosokawa Y, Moriue T, Presland RB, Fallon PG, Kabashima K, Kosaka H, Kubota Y (2012) Reduced expression of epidermal growth factor receptor, E-cadherin, and occludin in the skin of flaky tail mice is due to filaggrin and loricrin deficiencies. Am J Pathol 181:969–977

    Article  CAS  PubMed  Google Scholar 

  • North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (2003) The human Sir2 ortholog, SIRT2, is an NAD + -dependent tubulin deacetylase. Mol Cell 11:437–444

    Article  CAS  PubMed  Google Scholar 

  • Ohanna M, Bonet C, Bille K, Allegra M, Davidson I, Bahadoran P, Lacour JP, Ballotti R, Bertolotto C (2014) SIRT1 promotes proliferation and inhibits the senescence-like phenotype in human melanoma cells. Oncotarget 5:2085–2095

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohguchi K, Itoh T, Akao Y, Inoue H, Nozawa Y, Ito M (2010) SIRT1 modulates expression of matrix metalloproteinases in human dermal fibroblasts. Br J Dermatol 163:689–694

    Article  CAS  PubMed  Google Scholar 

  • Ratushny V, Gober MD, Hick R, Ridky TW, Seykora JT (2012) From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. J Clin Invest 122:464–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers HW, Weinstock MA, Feldman SR, Coldiron BM (2015) Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012. JAMA Dermatol 151:1081–1086

    Article  PubMed  Google Scholar 

  • Saunders LR, Verdin E (2007) Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26:5489–5504

    Article  CAS  PubMed  Google Scholar 

  • Schwer B, Schumacher B, Lombard DB, Xiao C, Kurtev MV, Gao J, Schneider JI, Chai H, Bronson RT, Tsai LH et al (2010) Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc Natl Acad Sci U S A 107:21790–21794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastian C, Mostoslavsky R (2015) The role of mammalian sirtuins in cancer metabolism. Semin Cell Dev Biol 43:33–42

    Article  CAS  PubMed  Google Scholar 

  • Sebastian C, Satterstrom FK, Haigis MC, Mostoslavsky R (2012a) From sirtuin biology to human diseases: an update. J Biol Chem 287:42444–42452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastian C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L, Ram O, Truelove J, Guimaraes AR, Toiber D et al (2012b) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151:1185–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano L, Martinez-Redondo P, Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P, Beck DB, Kane-Goldsmith N, Tong Q, Rabanal RM et al (2013) The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev 27:639–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serravallo M, Jagdeo J, Glick SA, Siegel DM, Brody NI (2013) Sirtuins in dermatology: applications for future research and therapeutics. Arch Dermatol Res 305:269–282

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Diecke S, Zhang WY, Lan F, He C, Mordwinkin NM, Chua KF, Wu JC (2013) The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells. J Biol Chem 288:18439–18447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh CK, George J, Nihal M, Sabat G, Kumar R, Ahmad N (2014) Novel downstream molecular targets of SIRT1 in melanoma: a quantitative proteomics approach. Oncotarget 5:1987–1999

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V, Pillai VB, Ravindra PV, Gupta M, Jeevanandam V et al (2012) The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 18:1643–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syed DN, Mukhtar H (2013) Ozone and SIRT3: an unexplored paradigm. Exp Dermatol 22:396

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Huang G, Fan W, Chen Y, Ward JM, Xu X, Xu Q, Kang A, McBurney MW, Fargo DC et al (2014) SIRT1-mediated deacetylation of CRABPII regulates cellular retinoic acid signaling and modulates embryonic stem cell differentiation. Mol Cell 55:843–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tennen RI, Chua KF (2011) Chromatin regulation and genome maintenance by mammalian SIRT6. Trends Biochem Sci 36:39–46

    Article  CAS  PubMed  Google Scholar 

  • Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P, Sebastian C, Cosentino C, Martinez-Pastor B, Giacosa S et al (2013) SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell 51:454–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, Serrano L, Sternglanz R, Reinberg D (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20:1256–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Yue Z, Paus R, Ramot Y (2014) SIRT2 as a new player in epigenetic programming of keratinocyte differentiation and a candidate tumor suppressor. Exp Dermatol 23:636–638

    Article  CAS  PubMed  Google Scholar 

  • Wilking MJ, Singh C, Nihal M, Zhong W, Ahmad N (2014) SIRT1 deacetylase is overexpressed in human melanoma and its small molecule inhibition imparts anti-proliferative response via p53 activation. Arch Biochem Biophys 563:94–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YT, Lee HC, Liao CC, Wei YH (2013) Regulation of mitochondrial F(o)F(1)ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977 bp deletion of mitochondrial DNA. Biochim Biophys Acta 1832:216–227

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Kim HS, Lahusen T, Wang RH, Xu X, Gavrilova O, Jou W, Gius D, Deng CX (2010) SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J Biol Chem 285:36776–36784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T et al (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We apologize to those investigators whose work could not be directly referenced owing to space limitations. Work in the authors’ laboratory was supported by NIH/NIEHS grants ES016936 and ES024373 (YYH), the American Cancer Society (ACS) grant RSG-13-078-01 (YYH), the University of Chicago Cancer Research Center (P30 CA014599), the CTSA (UL1 TR000430), and the University of Chicago Friends of Dermatology Endowment Fund. I thank Dr. Ann Motten for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ying He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

He, YY. (2016). Sirtuins and Stress Response in Skin Cancer, Aging, and Barrier Function. In: Wondrak, G. (eds) Skin Stress Response Pathways. Springer, Cham. https://doi.org/10.1007/978-3-319-43157-4_12

Download citation

Publish with us

Policies and ethics