Skip to main content

Free Sulfuric Amino Acids and Rhodanese in Soils Under Rye Cropping and Crop Rotation

  • Chapter
  • First Online:
Bioactive Compounds in Agricultural Soils

Abstract

During the entire period of study, the activity of rhodanese and the concentration of free sulfuric acids were higher in the soil under continuous rye cropping than in the soil under crop rotation. The transformations of organically bound sulfur in soil occur with the contribution of rhodanese enzyme (thiosulfate–cyanide–sulfurtransferase) [E.C. 2.8.1.1]. The enzyme catalyzes the conversion generating a thiocyanate group from thiosulfate and cyanide.

The linear and positive correlation between the concentration of free sulfuric amino acids and rhodanese activity in the soil under continuous rye cropping and in the soil under crop rotation was proved. Despite the correlation these two lines are not parallel. The slope of the curve of the soil under continuous rye cropping was about 1.5 times lower than the one determined for the soil under crop rotation. This indicates that the transformation processes of free sulfur amino acids and rhodanese were about 1.5 times slower in the soil under continuous rye cropping than in the soil under crop rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benerjee MR, Chapman SJ (1996) The significance of microbial biomass sulphur in soil. Biol Fert Soils 22:116–125

    Article  Google Scholar 

  • Boswell CC, Greg PEH (1998) Sulphur fertilizers for grazed pasture systems. In: Mauynard DG (ed) Sulphur in the environment. Marcel Dekker Inc, New York, pp 95–135

    Google Scholar 

  • Bu’Lock JD (1980) Biosynthesis of ergot toxins. In: Steyn PS (ed) Biosynthesis of mycotoxins. A study in secondary metabolism. Academic, New York, pp 1–16

    Chapter  Google Scholar 

  • Colemen R (1966) The importance of sulphur as a plant nutrient in world crop production. Soil Sci 101:230–239

    Article  Google Scholar 

  • Durska G, Kaczmarek W, Kaszubiak H, Muszyńska M, Pędziwilk Z (1986) Występowanie bakterii i grzybów w glebie oraz ich aktywność oddechowa pod uprawą żyta w płodozmianach uproszczonych. Abundance of the bacteria and fungus and their respiratory activity under continuous cropping of rye. In: Myśków W, Kuś J, Kamińska M (eds) Ekologiczne skutki monokulturowej uprawy zbóż. Instytut Uprawy Nawożenia i Gleboznawstwa, Puławy, pp 95–106 (in Polish)

    Google Scholar 

  • Fitgerald JW (1976) Sulphate esters formation and hydrolysis: A potentially important yet often ignored of the sulphur cycle of aerobic soils. Bact Rev 40:698–721

    Google Scholar 

  • Fitgerald JW (1978) Naturally occurring organo suphur compounds in soils. In: Nriagu JO (ed) Sulphur in the environment. Part II Ecological impacts. Willey, New York, pp 391–443

    Google Scholar 

  • Fox RL, Atesalp HM, Kampbel DH, Rhodes HF (1994) Factors influencing the availability of sulfur fertilizers to alfalfa and corn. Soil Sci Soc Am Proc 28:406–408

    Article  Google Scholar 

  • Freney JR (1958) Aerobic transformation of cysteine to sulphate in soil. Nature 8:1318–1319

    Article  Google Scholar 

  • Freney JR (1986) Form and reaction of organic sulphur compounds in soils. In: Tabatabai MA (ed) Sulphur in agriculture, Agronomy monograph 27. Society of Agronomy, Madison, pp 207–232

    Google Scholar 

  • Freney J, Stevenson FJ (1972) Organic sulfur transformations in soils. Soil Sci 101:307–316

    Article  Google Scholar 

  • Freney JR, Williams CH (1983) The sulphur cycle in soil. In: Ivanov MV, Freney JR (eds) Global biogeochemical sulphur cycle. Willey, New York, pp 129–201

    Google Scholar 

  • Freney JR, Stevenson FJ, Beavers AH (1972) Sulfur-containing amino acids in soil hydrolysates. Soil Sci 114(6):468–476

    Article  CAS  Google Scholar 

  • Howarth RW, Stewart JWB, Ivanov WV (1992) Sulphur cycling on the continents. Willey, New York, p 350

    Google Scholar 

  • Lambert MJ, Turner J (1998) Sulphur nutrition and cycling in southern hemisphere temperate and subtropical forest ecosystems. In: Maynard DG (ed) Sulphur in the environment. Marcel Dekker Inc, New York, pp 253–294

    Google Scholar 

  • McCaskil MR, Blair GJ (1988) Development of a simulation model of sulphur cycling in grazed pastures. Biogeochemistry 5:165–181

    Article  Google Scholar 

  • Mintel R, Westley J (1966) The rhodanese reaction, mechanism of thiosulfate binding. J Biol Chem 241:3386–3389

    CAS  PubMed  Google Scholar 

  • Mitchel MJ, David MB, Harrison RB (1992) Sulphur dynamics of forest ecosystems. In: Howarth RW, Stewart JWB, Ivanov WV (eds) Sulphur cycling on the continent. Willey, New York, pp 215–260

    Google Scholar 

  • Nguyen ML, Goh KM (1994) Sulphur cycling and its implications on sulphur fertilizer requirements of grazed grassland ecosystems. Agric Eco Envir 49:173–206

    Article  CAS  Google Scholar 

  • Noggle JC, Meagher JF, Jones UC (1986) Sulphur in the atmosphere and its effects on plant growth. In: Tabatabai MA (ed) Sulfur in agriculture, Agronomy monograph 27. American Society of Agronomy, Madison, pp 251–278

    Google Scholar 

  • Nor YM, Tabatabai MA (1976) Extraction and colorimetric determination of thiosulfate and tetrathionate in soils. Soil Sci 122:171–178

    Article  CAS  Google Scholar 

  • Nor YM, Tabatabai MA (1977) Oxidation of elemental sulfur in soils. Soil Sci Soc Am J 41:736–741

    Article  CAS  Google Scholar 

  • Page AL (1982) Methods of soil analysis. Part 2. Chemical and microbiological properties, 2nd edn, Agronomy No 9. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 901–947

    Google Scholar 

  • Ryszkowski L, Karg J, Szajdak L (1994) Effects of continuous cereal cropping on biota. In: Tallis JH, Norman HJ, Benton J (eds) VIth International Congress of Ecology, INTECOL, Book of Abstracts: Manchester 21–26 August 1994, pp 85–87

    Google Scholar 

  • Ryszkowski L, Szajdak L, Karg J (1998) Effects of continuous cropping of rye on soil biota and biochemistry. Crit Rev Plant Sci 17(2):225–244

    Article  CAS  Google Scholar 

  • Saggar S, Bolan NS (2003) Secondary nutrients: sulphur, calcium, and magnesium. In: Benbi DK, Nieder R (eds) Handbook of processes and modeling in the soil-plant system. Food Products Press/The Haworth Reference Press, New York, pp 561–588

    Google Scholar 

  • Saggar S, Bettany JR, Stewart JWB (1981) Sulphur transformation in relation to carbon and nitrogen in incubated soils. Soil Biol Bioch 13:499–511

    Article  CAS  Google Scholar 

  • Saggar S, Hedley MJ, Gillingham AG, Rowarth JS, Richardson S, Bolan NS, Gregg PEH (1990a) Predicting the fate of fertilizer sulphur in grazed hill country pasture by modeling the transfer and accumulation of soil phosphorus. N Z J Agric Res 33:129–138

    Article  Google Scholar 

  • Saggar S, Mackay AD, Hedley MJ, Lambert MG, Clark DA (1990b) A nutrient transfer model to explain the fate of phosphorus and sulphur in grazed hill-country pasture. Agric Eco Envir 30:295–315

    Article  Google Scholar 

  • Schnitzer A, Hindle AA, Meglic M (1986) Supercritical gas extraction of alkanes and alkanoic acids from soils and humic materials. Soil Sci Soc Am J 50:913–919

    Article  CAS  Google Scholar 

  • Starkey R (1966) Oxidation and reduction of sulfur compounds in soils. Soil Sci 101(4):297–306

    Article  CAS  Google Scholar 

  • Stevenson G (1972) Biologia grzybów, bakterii i wirusów. Biology of fungus, bacteria and viruses. PWRiL, Warszawa, p 280

    Google Scholar 

  • Stevenson FJ (1986) Cycles of soils, A Wiley-Interscience publication. Wiley, New York, pp 285–320

    Google Scholar 

  • Steyn PS (1980) The biosynthesis of mycotoxins. A study in secondary metabolism. Academic, London, p 355

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, Oxford/London, pp 167–219

    Google Scholar 

  • Syers JK, Skinner RJ, Curtin D (1987) Soil and fertilizer sulphur in UK agriculture. In: Proceedings of the Fertilizer Society, London, p 264

    Google Scholar 

  • Szajdak L (1996) Impact of crop rotation and phenological periods on rhodanese activity and free sulfuric amino acids concentrations in soils under continuous rye cropping and crop rotation. Environ Int 22:563–569

    Google Scholar 

  • Szajdak L (1999) Wpływ wieloletniej uprawy monokulturowej żyta na zawartość i właściwości fizykochemiczne związków biologicznie czynnych w glebach. Impact of long-term continuous cropping of rye on the content and physical properties of biologically active substance in soils. Zesz Nauk Akad Rol Wrocł. Akademia Rolnicza we Wrocławiu. pp 104 (in Polish)

    Google Scholar 

  • Szajdak L, Österberg R (1996) Amino acids present in humic acids from soils under different cultivations. Environ Int 22(3):331–334

    Article  CAS  Google Scholar 

  • Szajdak L, Ryszkowski L (1997) Wpływ wieloletniej uprawy żyta w monokulturze na zawartość substancji biologicznie czynnych w glebie (Impact of long-term continuous cropping of rye on the concentrations of biologically substances in soils). Acta Acad Agric Tech Olst Agric 64:157–170 (in Polish)

    Google Scholar 

  • Szajdak L, Życzyńska-Bałoniak I (1995) Biological active substances in soils under crop rotation and continuous cropping of rye. 5th Nordic symposium on humic substances and humex project seminar, Lund, 6–8 June, p 63

    Google Scholar 

  • Szajdak L, Życzyńska-Bałoniak I, Blecharczyk A, Matuszewska T (1996) Amino acids in humic acids from soils under continuous cropping of rye and crop rotation. First world congress on allelopathy, Cadiz, Sept 16–20. p 86

    Google Scholar 

  • Tabatabai MA (1984) Importance of sulphur in crop production. Biogeochemistry 1:45–62

    Article  CAS  Google Scholar 

  • Tabatabai MA (1986) Sulfur in agriculture. Agronomy No 27 in the series. Am Soc Agron, Crop Sci Soc Am, Soil Sci Soc Am, Madison, p 1–22

    Google Scholar 

  • Tabatabai MA, Singh BB (1979) Rhodanese activity of soils. Soil Biol Bioch 11:9–12

    Article  CAS  Google Scholar 

  • Thomson JF, Smith IK, Madison JT (1986) Sulphur metabolism in plants. In: Tabatabai MA (ed) Sulphur in agriculture, Agronomy monograph 27. American Society of Agronomy, Madison, pp 59–122

    Google Scholar 

  • Trojanowski J (1973) Przemiany substancji organicznych w glebie (Transformation of organic compounds in soils). PWRiL, Warszawa, p 331 (in Polish)

    Google Scholar 

  • Vancura V (1967) Root exudates of plant. III. Effects of temperature and “cold shock’ on the exudation of various compounds from seeds and seedlings of maize and cucumber. Plant Soil 27:319–328

    Article  CAS  Google Scholar 

  • Wainwright M (1979) Microbial S-oxidation in soils exposed to heavy atmospheric pollution. Soil Biol Bioch 11:95–98

    Article  CAS  Google Scholar 

  • Watkinson JH (1989) Measurement of the oxidation rate of elemental sulfur in soils. Aust J Soil Res 27:365–375

    Article  CAS  Google Scholar 

  • Watkinson JH, Bolan NS (1998) Modeling the rate of elemental sulphur oxidation in soils. In: Maynard DG (ed) Sulphur in the environment. Marcel Dekker Inc, New York, pp 135–172

    Google Scholar 

  • Watkinson JH, Lee A (1994) Kinetics of field oxidation of elemental sulphur in New Zealand pastoral soils and the effects of soil temperature and moisture. Fert Res 37:59–68

    Article  CAS  Google Scholar 

  • Wu J, O’Donnel AG, He ZL, Syres JK (1994) Fumigation-extraction method for the measurement of microbial biomass-S. Soil Biol Bioch 26:117–125

    Article  CAS  Google Scholar 

  • Życzyńska-Bałoniak I, Szajdak L (1991) Sezonowe zmiany aminokwasów w glebie spod uprawy roślin w monokulturze i zmianowaniu (Seasonal changes of amino acids in soils under continuous cropping of rye). Badania nad bilansem substancji organicznej i składników pokarmowych w układzie gleba-roślina. Materiały sesji naukowej poświęconej pamięci Prof. dr. hab. Włodzimierza Łoginowa. Bydgoszcz 23 września, pp 85–87 (in Polish)

    Google Scholar 

  • Życzyńska-Bałoniak I, Szajdak L (1992) Sezonowe zmiany wolnych aminokwasów w glebie spod monokultury żyta i zmianowania. In: Balazy S, Ryszkowski L (eds) Produkcja pierwotna, zasoby zwierząt i wymywanie materii organicznej w krajobrazie rolniczym (Primary production, resource of animals and leaching in agricultural landscape). ZBŚRiL PAN, Poznań, pp 7–15 (in Polish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lech Wojciech Szajdak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Szajdak, L.W., Rusu, T. (2016). Free Sulfuric Amino Acids and Rhodanese in Soils Under Rye Cropping and Crop Rotation. In: Szajdak, L. (eds) Bioactive Compounds in Agricultural Soils. Springer, Cham. https://doi.org/10.1007/978-3-319-43107-9_4

Download citation

Publish with us

Policies and ethics