Skip to main content

The Importance of Horticultural Growing Media and Biochemical Processes

  • Chapter
  • First Online:
Bioactive Compounds in Agricultural Soils

Abstract

The effect of the IAA content in the different media on the rooting of the cuttings of ornamental plants: chrysanthemum Dendranthema grandiflora “Zembla White,” poinsettia Euphorbia pulcherrima “Prestige Early Red,” and hydrangea Hydrangea L. was investigated The rooting of the cuttings was carried out in cell trays with the use of six rooting substrates (three commercial substrates and three self-prepared substrates based on Polish neutralized white peat mixed with perlite). All substrates contained four concentrations of IAA (natural concentration, 200, 300, and 400 μg kg−1). The natural content of IAA in the studied substrates was as follows: (i) commercial growing media for rooting of cuttings “Klasmann Steck Medium,” 142.52 μg kg−1 d.m.; (ii) commercial growing media for rooting of cuttings “Substrate for rooting cuttings of ornamental plants AURA,” 114.82 μg kg−1 d.m.; (iii) commercial growing media for rooting of cuttings CERES, 158.36 μg kg−1 d.m.; (iv) white peat (H3–H4) from Northwestern Poland, 133.63 μg kg−1 d.m.; (v) white peat (H3–H4) from Northern Poland, 109.88 μg kg−1 d.m.; and (vi) white peat (H3–H4) from the Northeastern Poland, 123.54 μg kg−1 d.m.

In addition, the activity of the enzymes which participate in the nitrogen cycle and redox processes was measured in growing media during cultivation period. The experiments were in the line with EPPO norms [European and Mediterranean Plant Protection Organization—Guideline for the efficiency evaluation of plant growth regulators, Rooting of cuttings, PP 1/186(2)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali B, Sabri AN, Hasnain S (2009) Indole-3-acetic acid production by plant associated bacteria: potential to alter endogenous IAA content and growth of Triticum aestivum L. New Biotechnol 25S. doi:10.1016/j.nbt.2009.06.883

    Google Scholar 

  • Amha Y, Bohne H (2011) Denitrification from the horticultural peat: effects of pH, nitrogen, carbon, and moisture contents. Biol Fertil Soils 47:293–302

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT Jr (1991) Microbial production of plant hormones. Plant Soil 133:1–8

    Article  CAS  Google Scholar 

  • Barbieri P, Zanelli T, Galli E, Zanetti G (1986) Wheat inoculation with Azospirillum brazilance Sp6 and some mutants altered in nitrogen fixation and indole-3-acetic acid production. FEMS Microbiol Lett 36:87–90

    Article  CAS  Google Scholar 

  • Barea JM, Brown ME (1974) Effects on plant growth by Azotobacter paspali related to synthesis of plant growth regulating substances. J Appl Bacteriol 37:583–593

    Article  CAS  PubMed  Google Scholar 

  • Benitez E, Melgar R, Nogales R (2004) Estimating soil resilience to a toxic organic waste by measuring enzyme activities. Soil Biol Biochem 36:1615–1623

    Article  CAS  Google Scholar 

  • Benitez E, Nogales R, Campos M, Ruano F (2006) Biochemical variability of olive-orchard soils under different management systems. Appl Soil Ecol 32:221–231

    Article  Google Scholar 

  • Beyeler M, Keel C, Michau P, Haas D (1999) Enhanced production of indole-3-acetic acid by a genetically modified strain of Pseudomonas fluorescens CHA0 affects root growth of cucumber, but does not improve protection of the plant against Pythium root rot. FEMS Microbiol Ecol 28:225–233

    Article  CAS  Google Scholar 

  • Bhekithemba M, Wahome PK (2010) Propagation of geranium (Pelargonium hortorum) using different medium components. Am Eurasian J Agric Environ Sci 7(5):497–500

    Google Scholar 

  • Børsheim KY, Christensen BE, Painter TJ (2001) Preservation of fish by embedment in Sphagnum moss, peat or holocellulose: experimental proof of the oxopolysaccharidic nature of the preservative substance and of its antimicrobial and tanning action. Innov Food Sci Emerg Technol 2:63–74

    Article  Google Scholar 

  • Carnol M, Ineson P (1999) Environmental factors controlling NO3 leaching, N2O emissions and numbers of NH4 + oxidisers in a coniferous forest soil. Soil Biol Biochem 31:979–990

    Article  CAS  Google Scholar 

  • Caron M, Patten CL, Ghosh S (1995) Effects of plant growth promoting rhizobacteria Pseudomonas putida GR-122 on the physiology of canola roots. Proc Plant Growth Reg Soc Am 7:18–20

    Google Scholar 

  • Chao IL, Cho CL, Chen L-M, Liu Z-H (2001) Effect of indole-3-butyric acid on the endogenous indole-3-acetic acid and lignin contents in soybean hypocotyl during adventitious root formation. J Plant Physiol 158:1257–1262

    Article  CAS  Google Scholar 

  • Chaperon S, Sauve S (2007) Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biol Biochem 39:2329–2338

    Article  CAS  Google Scholar 

  • Conesa A, Punt PJ, Van Den Hondel CAMJJ (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–158

    Article  CAS  PubMed  Google Scholar 

  • Cresswell GC (1992) Coir dust – a viable alternative to peat. In: Proceedings of the Australian potting mix manufacturers conference. 2–3 April 1992, Sydney, Australia, pp 1–5

    Google Scholar 

  • Criquet S, Farnet AM, Tagger S, Le Petit J (2000) Annual variations of phenoloxidase activities in an evergreen oak litter: influence of certain biotic and abiotic factors. Soil Biol Biochem 32:1505–1513

    Article  CAS  Google Scholar 

  • Dahm H, Sitek JM, Strzelczyk E (1977) Synthesis of auxins by bacteria isolated from the roots of pine seedlings inoculated with rusty forest soil. Pol J Soil Sci 10:131–137

    CAS  Google Scholar 

  • Dalal RC, Mayer RJ (1986) Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. V. Rate of loss of total nitrogen from the soil profile and changes in carbon-nitrogen ratios. Aust J Soil Res 24:493–504

    Article  Google Scholar 

  • Dec J, Haider K, Bollag JM (2003) Release of substituents from phenolic compounds during oxidative coupling reactions. Chemosphere 52:549–556

    Article  CAS  PubMed  Google Scholar 

  • Deng SP, Tabatabai MA (1997) Effect of tillage and residue management on enzyme activities in soils: III. phosphatases and arylsulfatase. Biol Fertil Soils 24:141–146

    Article  CAS  Google Scholar 

  • Djurdjevic’ L, Dinic’ A, Mitrovic’ M, Pavlovic’ P, Teševic V (2003) Phenolic acids distribution in a peat of the relict community with Serbian spruce in the Tara Mt. forest reserve (Serbia). Eur J Soil Biol 39:97–103

    Article  CAS  Google Scholar 

  • Dundek P, Holík L, Rohlík T, Hromádko L, Vranová V, Rejšek K, Formánek P (2011) Methods of plant root exudates analysis. Rev Acta Univ Agric et Silv Mend 59(3):241–246

    Article  Google Scholar 

  • Falkowski G, Szydło W (2005) Wpływ terminu przesadzania i sposobu zastosowania auksyn na wzrost wybranych gatunków drzew i krzewów ozdobnych. (The effect of transplanting date and the way of applying auxins on the growth of selected ornamental trees and shrubs). Zesz Nauk Inst Sad Kwiac 13:111–117 (in Polish)

    Google Scholar 

  • Farnsworth K, Guam RH (1995) Root initiation in Ocotea bullata (Burch.) Baill. Cuttings. South Afr For J 173:31–33

    Google Scholar 

  • Fenner N, Frejman C, Reynolds B (2005) Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies. Soil Biol Biochem 37:1814–1821

    Article  CAS  Google Scholar 

  • Firestone MK (1982) Biological denitrification. In: Stevenson FJ (ed) Nitrogen in agricultural soils. American Society of Agronomy, Madison, pp 289–326

    Google Scholar 

  • Fisher PR, Dickson RW, Mohammad-Pour G, Huang J (2013) Effect of the solution electrical conductivity (EC) and pre-plant nutrient form on the pH of a peat-perlite substrate. In: Book of abstracts. The international symposium on growing media and soilless cultivation. 17–21 June 2013, Leiden, Netherlands, p 55

    Google Scholar 

  • Freeman C, Liska G, Ostle NJ, Lock MA, Reynolds B, Hudson J (1996) Microbial activity and enzymic decomposition processes following peatland water table drawdown. Plant Soil 180:121–127

    Article  CAS  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001) An enzymic ‘latch’ on a global carbon storage. Nature 409:149

    Article  CAS  PubMed  Google Scholar 

  • Freeman C, Ostle NJ, Fener N, Kang H (2004) A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol Biochem 36:1663–1667

    Article  CAS  Google Scholar 

  • Fried R, Fried LW (1983) Xanthine oxidase (Xanthine dexydrogenase). In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 2. Wiley, New York, pp 644–649

    Google Scholar 

  • Fu MH, Tabatabai MA (1989) Nitrate reductase activity in soils: effects of trace elements. Soil Biol Biochem 21:943–946

    Article  CAS  Google Scholar 

  • Fujimoto Y, Sakuma S, Tagami T, Ichikawa R, Fujita T (2000) N-ethylmaleimide inhibits xanthine oxidase activity with no detectable change in xanthine dehydrogenase activity in rabbit liver. Life Sci 68:517–524

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Rodriguez T, Alvarez C, Peréz-Silva J (1986) Indole-3-acetic acid production by cell-free extracts of Rhizobium trifolii. Pol J Soil Sci 17:59–65

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Brooks HE, Pasternak JJ (1986) Physiological effects of plasmid DNA transformation of Azotobacter vinelandii. Can J Microbiol 32:145–148

    Article  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, p 270

    Book  Google Scholar 

  • Groffman PM, Tiedje JM, Mokma DL, Simkins S (1992) Regional scale analysis of denitrification in north temperate forest soils. Landsc Ecol 7:45–53

    Article  Google Scholar 

  • Halda-Alija L (2003) Identification of indole-3-acetic acid producing freshwater wetland rhizosphere bacteria associated with Juncus effusus L. Can J Microbiol 49:781–787

    Article  CAS  PubMed  Google Scholar 

  • Hille R, Massey V (1985) Molybdenum – containing hydroxylases: xanthine oxidaes, aldehyde oxidase, and sulfite oxidase. In: Thomas S (ed) Molybdenum enzymes. Wiley, New York, pp 443–518

    Google Scholar 

  • Huttunen J, Reinikainen O (2000) Peat growing media in modern vegetable production in greenhouses. In: Rochefort L, Daigle JY (eds) Sustaining our peatlands. Proceedings of the 11th international peat congress, vol II. Quebec, Canada, p 522

    Google Scholar 

  • Jankiewicz LS (1997) Przegląd regulatorów roślinnych. (Overview of plant regulators). In: Jankiewicz LS (ed) Regulatory wzrostu i rozwoju roślin. Właściwości i działanie. (Regulators of plant growth and development. Properties and action). Part 1. Wydawnictwo Naukowe PAN, Warszawa. pp 17–37 (in Polish)

    Google Scholar 

  • Johnsen AR, Jacobsen OS (2008) A quick and sensitive method for the quantification of peroxidase activity of organic surface soil from forests. Soil Biol Biochem 40:814–821

    Article  CAS  Google Scholar 

  • Kamnev AA, Shchelochkov AG, Perfiliev Y D, Tarantilis PA, Polissiou MG (2001) Spectroscopic investigation of indole-3-acetic acid interaction with iron (III). J Mol Struct 563–564:565–572

    Google Scholar 

  • Karnwal A (2009) Production of indole acetic acid by fluorescent Pseudomonas in the presence of L-Tryptophan and rice root exudates. J Plant Pathol 91(1):61–63

    CAS  Google Scholar 

  • Karsisto M, Hartman M, Potila H, Sarjala T (2004) Phenolic compounds and metabolic profiles of microbial communities in peat; effects of temperature and peat nitrogen status. In: Päinvänen J (ed) Wise use of peatlands. Proceedings of the 12th international peat congress vol I. Tampere, Finland, p 306

    Google Scholar 

  • Kawano T, Kawano N, Hosoya H, Lapeyrie F (2001) Fungal auxin antagonist hypaphorine competitively inhibits indole-3-acetic acid dependent superoxide generation by horseradish peroxidase. Biochem Biophys Res Commun 288:546–551

    Article  CAS  PubMed  Google Scholar 

  • Kipp JA, Wever G, De Kreij C (2000) International substrate manual. Elsevier International Business Information, Doetinchem, pp 1–94

    Google Scholar 

  • Klemedtsson L, Svensson BH, Rosswall T (1988) A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil. Biol Fertil Soils 6:112–119

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Article  Google Scholar 

  • Linch JM (1976) Products of soil micro-organisms in relation to plant growth. CRC Crit Rev Microbiol 5:67–107

    Article  Google Scholar 

  • Ludwig-Müller J, Hilgenberg W, Epstein E (1995) The in vitro biosynthesis of indole-3-butyric acid in maize. Phytochemistry 40(1):61–68

    Article  Google Scholar 

  • Ma RX (2000) Effects of allelochemicals on activity of nitrate reductase. J Environ Sci 12:125–128

    CAS  Google Scholar 

  • Ma Z, Ge L, Lee ASY, Yong JWH, Tan SN, Ong ES (2008) Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography – tandem mass spectrometry after solid-phase extraction. Anal Chim Acta 610:274–281

    Article  CAS  PubMed  Google Scholar 

  • Makoi JHJR, Ndakidemi PA (2008) Selected soil enzymes: examples of their potential roles in the ecosystem. Afr J Biotechnol 7(3):181–191

    CAS  Google Scholar 

  • Martinez FX, Sepò N, Valero J (1997) Physical and physicochemical properties of peat-coir mixes and the effect of clay-material addition. Acta Hortic 450:39–46

    Article  Google Scholar 

  • Martinez-Morales LJ, Soto-Urzúa LS, Baca BE, Sánchez-Ahèdo JA (2003) Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. FEMS Microbiol Lett 228:167–173

    Article  CAS  PubMed  Google Scholar 

  • Marzadori C, Francioso O, Ciavatta C, Gessa C (2000) Influence of the content of heavy metals and molecular weight of humic acids fractions on the activity and stability of urease. Soil Biol Biochem 32:1893–1898

    Article  CAS  Google Scholar 

  • Masuoka N, Kubo I (2004) Characterization of xanthine oxidase inhibition by anacardic acids. Biochim Biophys Acta 1688:245–249

    Article  CAS  PubMed  Google Scholar 

  • Matocha CJ, Haszler GR, Grove JH (2004) Nitrogen fertilization suppresses soil phenol oxidase enzyme activity in no-tillage systems. Soil Sci 169(10):708–714

    Article  CAS  Google Scholar 

  • Matysiak B, Nowak JS (2008) Coir substrates for rooting of ornamental ericaceous plants. Prop Orn Plants 8(2):76–80

    Google Scholar 

  • Meerow AW (1994) Growth of two subtropical ornamentals using coir (coconut mesocarp pith) as a peat substitute. HortSci 29(12):1484–1486

    Google Scholar 

  • Meerow AW (1995) Growth of two tropical foliage plants using coir dust as a container medium amendment. HortTechnology 5:237–239

    Google Scholar 

  • Montalbini P (1992) Changes in xanthine oxidase activity in bean leaves induced by Uromyces phaseoli infection. J Phytopathol 134:63–74

    Article  CAS  Google Scholar 

  • Murray RE, Knowles R (1999) Chloramphenicol inhibition of denitrifying enzyme activity in two agricultural soils. Appl Environ Microbiol 65:3487–3492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama T, Amachi T (1999) Fungal peroxidase: its structure, function, and application. J Mol Catal B Enzym 6:185–198

    Article  CAS  Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment. Activity, ecology, and applications. Marcel Dekker Inc., New York, pp 1–33

    Google Scholar 

  • Noguera P, Abad M, Puchades R, Noguera V, Macquieira A, Martinez J (1997) Physical and chemical properties of coir waste and their relation to plant growth. Acta Hortic 450:365–369

    Article  Google Scholar 

  • Painter TJ (1998) Carbohydrate polymers in food preservation: an integrated view of the Maillard reaction with special reference to discoveries of preserved foods in Sphagnum-dominated peat bogs. Carbohydr Polym 36:335–347

    Article  CAS  Google Scholar 

  • Patten C, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Pudelski T (2002) Torf i wyroby z torfu w ogrodnictwie. In: Ilnicki P (ed) Torfowiska i torf. (Peatlands and peat). Wydawnictwo. AR im. Augusta Cieszkowskiego, Poznań, pp 458–467 (in Polish)

    Google Scholar 

  • Ralte V, Pandey HN, Barik SK, Tripathi RS, Prabhu SD (2005) Changes in microbial biomass and activity in relation to shifting cultivation and horticultural practices in subtropical evergreen forest ecosystem of north-east India. Acta Oecol 28:163–172

    Article  Google Scholar 

  • Raviv M, Wallach R, Silber A, Bar-Tal A (2002) Substrates and their analysis. In: Savvas D, Passam H (eds) Hydroponic production of vegetables and ornamental. Embrio Publications, Athens, pp 25–101

    Google Scholar 

  • Rejmánkova E, Sirová D (2007) Wetland macrophyte decomposition under different nutrient conditions: Relationships between decomposition rate, enzyme activities and microbial biomass. Soil Biol Biochem 39:526–538

    Article  CAS  Google Scholar 

  • Robertson K, Klemedtsson L (1996) Assessment of denitrification in organogenic forest soil by regulating factors. Plant Soil 178:49–57

    Article  CAS  Google Scholar 

  • Rose R, Haase D (2000) The use of coir as a containerized growing medium for Douglas-fir seedlings. Nat Plants J 2:107–111

    Article  Google Scholar 

  • Sardans J, Peñuelas J (2005) Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol Biochem 37:455–461

    Article  CAS  Google Scholar 

  • Sardans J, Penňuelas J, Estiarte M (2008) Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Appl Soil Ecol 39:223–235

    Article  Google Scholar 

  • Sarwar M, Arshad M, Martens DA, Frankenberger WT Jr (1992) Tryptophan-dependent of auxins in soil. Plant Soil 147:207–215

    Article  CAS  Google Scholar 

  • Savio LEB, Astarita LV, Santarém ER (2011) Secondary metabolism in micropropagated Hypericum perforatum L. grown in non-aerated liquid medium. Plant Cell Tiss Org Cult. doi: 10.1007/s11240-011-0058-9

    Google Scholar 

  • Schmilewski G (2008) The role of peat in assuring the quality of growing media. Mires and peat 3/02. http://www.mires-and-peat.net/, ISSN 1819-754X. pp 1–8

  • Schmilewski G, Falkenberg H (2000) Production and processing of peat-based growing media – a precondition for sustainable horticulture in Europe. In: Rochefort L, Daigle JY (eds) Sustaining our peatlands. Proceedings of the 11th international peat congress, vol II. Quebec, Canada, pp 533–541

    Google Scholar 

  • Shadparvar V, Torkashvand MA, Alamshiri AH (2011) Effect of IBA and soil mixture on rooting of Hibiscus rosa – sinensis. Eur J Exp Biol 1(4):142–146

    CAS  Google Scholar 

  • Shi W (2011) Agricultural and ecological significance of soil enzymes: soil carbon sequestration and nutrient cycling. In: Shukla G, Varma A (eds) Soil enzymology. Chapter 3. Springer-Verlag, Berlin/Heidelberg, pp 43–60

    Google Scholar 

  • Singh DK, Kumar S (2008) Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments. Chemosphere 71:412–418

    Article  CAS  PubMed  Google Scholar 

  • Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Causack D, Frey S, Gallo ME, Gartner MN, Ahmed TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Wallenstein MD, Zak DR, Zeglin LH (2008) Stoichiometry of a soil enzyme activity at global scale. Ecol Lett 11:1252–1264

    PubMed  Google Scholar 

  • Smith C (1995) Coir: a viable alternative to peat for potting. Horticulturist 4:24–28

    Google Scholar 

  • Sommers LE, Gilmour CM, Wildrung RE, Beck SM (1981) The effect of water potential on decomposition processes in soils. In: Parr JF (ed) Water potential relationships in soil microbiology, Special Publication 9. Soil Science Society of America, Madison, pp 97–117

    Google Scholar 

  • Stamps RH, Evans MR (1999) Growth of Dracaena marginata and Spathiphyllum ‘Petite’ in Sphagnum peat and coconut coir dust-based growing media. J Environ Hortic 17:49–52

    Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soil. Wiley, New York, p 448

    Google Scholar 

  • Stoven J, Kooima H (1999) Coconut coir-based media versus peat-based media for propagation of woody ornamentals. Comb Proc Int Plant Prop Soc 49:373–374

    Google Scholar 

  • Styła K, Sawicka A (2009) Biochemical activity of soil in apple tree (Malus domestica) orchard after replantation. Agron Res 7(2):855–864

    Google Scholar 

  • Sun X, Xiang W, He L, Zhao Y (2010) Impacts of hydrological conditions on enzyme activities and phenolic concentrations in peatland soil: an experimental simulation. Front Earth Sci Chin 4(4):463–470

    Article  CAS  Google Scholar 

  • Świstowska A, Hetman J (2004) Wpływ auksyn na ukorzenianie mikrosadzonek i adaptację roślin Columnea mirta Klotzsch et Haust. Cz. II. Następczy wpływ w uprawie szklarniowej. (The influence of auxins on the rooting of microcuttings and acclimatization of plants of Columnea hirta Klotzsch et Hanst. Part II. The consequent influence in the greenhouse cultivation). Acta Scient Polon Hort Cultus 3(2):239–248 (in Polish)

    Google Scholar 

  • Szajdak L (2004) Substancje aktywne biologicznie w kompostach z odpadów komunalnych na tle innych podłoży organicznych. (Biological active of substances in compost from municipal waste against a background organic growing media). In: Drozd J (ed) Komposty z odpadów komunalnych. Produkcja, wykorzystanie i wpływ na środowisko. (Municipal solid waste composts, production, utilization and influence on the environment). Polish Humic Substances Society, Wrocław, pp 186–196 (in Polish)

    Google Scholar 

  • Szajdak LW, Gaca W (2010) Nitrate reductase activity in soil under shelterbelt and adjoining cultivated field. Chem Ecol 26(4):123–134

    Article  CAS  Google Scholar 

  • Szajdak L, Maryganowa V (2007) Occurrence of IAA auxin in some organic soil. Agron Res 5(2):175–187

    Google Scholar 

  • Szajdak L, Maryganowa V (2009) Impact of age and composition of shelterbelts plant on IAA content as allelochemical in soils. Allelopath J 23(2):461–468

    Google Scholar 

  • Szajdak LW, Nowak JS (2013) Impact of peat substrates with different concentrations of indole-3-acetic acid on ornamental plant cultivation. Peatlands Int 1:25–27

    Google Scholar 

  • Szajdak LW, Styła K (2012) Phenol oxidase activity and the concentrations of total phenolic in peat profile of peatland by Nierybno Lake in Tuchola Forest National Park. In: Szajdak LW, Gaca W, Meysner T, Styła K, Szczepański M (eds) Necessity of peatlands protection. Wydawnictwo Prodruk, Poznań, pp 77–86

    Google Scholar 

  • Szajdak L, Maryganowa V, Bambalov N (2004) Concentration of indole-3-acetic acid in different kinds of peat and sapropel. In: Päinvänen J (ed) Wise use of peatlands. Proceedings of the 12th international peat congress, vol II. Tampere, Finland, pp 1152–1155

    Google Scholar 

  • Szajdak L, Gaca W, Karg M (2005) Impact of the age of shelterbelts and the composition of plants on the dissimilatory nitrate reductase activity in soils. Pol J Soil Sci 38(2):135–144

    CAS  Google Scholar 

  • Szajdak LW, Gaca W, Meysner T, Styła K, Maryganova V (2011a) Enzymes activity and IAA contents in soils. In: Narwal SS, Pavlovic P, John J (eds) Forestry and agroforestry, vol 2, Research methods in plant sciences. Studium Press LLC, Houston, pp 207–230

    Google Scholar 

  • Szajdak LW, Inisheva LI, Meysner T, Gaca W, Styła K (2011b) Activities of enzymes participating in redox potential in the two depths of Tagan peatland. Tomsk Pedagogical State University Herald 8(110):68–75

    Google Scholar 

  • Szajdak LW, Meysner T, Styła K (2011c) Biochemical and chemical characterization of soils under shelterbelts and adjoining cultivated fields. In: Szajdak LW (ed) Shelterbelts: efficient element of the landscape. LAP Lambert Academic Publishing, Saarbrücken, pp 33–53

    Google Scholar 

  • Szajdak LW, Gaca W, Styła K, Meysner T (2012a) Changes of enzyme activities in peat profile of Kusowo bog. In: Szajdak LW, Gaca W, Meysner T, Styła K, Szczepański M (eds) Necessity of peatlands protection. Wydawnictwo Prodruk, Poznań, pp 47–60

    Google Scholar 

  • Szajdak LW, Styła K, Meysnr T, Gaca W (2012b) Choice enzymes participating in oxydoreduction properties in peat profile of Stążka Mire. In: Szajdak LW, Gaca W, Meysner T, Styła K, Szczepański M (eds) Necessity of peatlands protection. Wydawnictwo Prodruk, Poznań, pp 61–75

    Google Scholar 

  • Szajdak LW, Nowak JS, Gaca W, Meysner T, Styła K, Szczepański M (2013) Mixture of growing medium with IAA, biochemical and chemical properties in Euphorbia pulcherrima cultivation. ProEnvironment 6(14):254–261

    Google Scholar 

  • Szydło W (2003) Auksyny w rozmnażaniu drzew i krzewów ozdobnych przez sadzonki. Charakterystyka auksyn. Cz. I. (Auxin in the propagation of ornamental trees and shrubs by cuttings. Characteristics of auxin. Part 1). Szkółkarstwo 4:7–9 (in Polish)

    Google Scholar 

  • Tarnawski M, Depta K, Grejciun D, Szelepin B (2006) HPLC determination of phenolic acids and antioxidant activity in concentrated peat extract-a natural immunomodulator. J Pharm Biomed Anal 41:182–188

    Article  CAS  PubMed  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomson AE, Zhmakova NA, Makarova NL, Naumova GV (2010) On free phenol compounds content in peat. In: Szajdak LW, Karabanov AK (eds) Physical, chemical and biological processes in soils. Wydawnictwo Prodruk, Poznań, pp 509–514

    Google Scholar 

  • Trasar-Cepeda C, Leiros C, Gil-Sortes F, Seona S (1998) Towards a biochemical quality index for soils: an expression relating several biological and biochemical properties. Biol Fertil Soils 26:100–106

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances (H-7508W) EPA-738-F-92-001. August 1992, R.E.D. FACTS, Indole-3-Butyric Acid. pp 1–4

    Google Scholar 

  • Verdonck O, De Vleeschauwer D, Penninck R (1983) Cocofibre dust a new growing medium for plants in the tropics. Acta Hortic 133:215–220

    Article  Google Scholar 

  • Yang SJ, Du ZY, Yu Y, Zhang ZL, Sun XY, Xing SJ (2011) Effects of root pruning on physico-chemical characteristics and biological properties of winter jujube rhizosphere soil. Plant Soil Environ 11:493–498

    Google Scholar 

  • Zhen Ma Z, Ge L, Lee ASY, Yong JWH, Tan SN, Ong ES (2008) Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography - tandem mass spectrometry after solid-phase extraction. Anal Chim Acta 610:274–281

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lech Wojciech Szajdak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Szajdak, L.W., Styła, K., Gaca, W., Meysner, T., Szczepański, M., Nowak, J.S. (2016). The Importance of Horticultural Growing Media and Biochemical Processes. In: Szajdak, L. (eds) Bioactive Compounds in Agricultural Soils. Springer, Cham. https://doi.org/10.1007/978-3-319-43107-9_12

Download citation

Publish with us

Policies and ethics