Skip to main content

Catalytic Upgrading of Glycerol, Conversion of Biomass Derived Carbohydrates to Fuels and Catalysis in Depolymerization of Lignin

  • Chapter
  • First Online:
  • 948 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Over the past decades, petroleum resources have been used dominantly in production of petrochemicals and also fuels for transportation results in the depletion of petroleum resources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhikari S, Fernando S, Gwaltney SR, To SF, Bricka RM, Steele PH, Haryanto A (2007) A thermodynamic analysis of hydrogen production by steam reforming of glycerol. Int J Hydrogen Energy 32(14):2875–2880

    Article  Google Scholar 

  • Adhikari S, Fernando SD, To SF, Bricka RM, Steele PH, Haryanto A (2008) Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts. Energy Fuels 22(2):1220–1226

    Article  Google Scholar 

  • Adhikari S, Fernando SD, Haryanto A (2009) Hydrogen production from glycerol: an update. Energy Convers Manag 50(10):2600–2604

    Article  Google Scholar 

  • Ahmad T, Kenne L, Olsson K, Theander O (1995) The formation of 2-furaldehyde and formic acid from pentoses in slightly acidic deuterium oxide studied by 1H NMR spectroscopy. Carbohyd Res 276(2):309–320

    Article  Google Scholar 

  • Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12(9):1493–1513

    Article  Google Scholar 

  • Ammam M (2013) Polyoxometalates: formation, structures, principal properties, main deposition methods and application in sensing. J Mater Chem A 1(21):6291–6312

    Article  Google Scholar 

  • Anbarasan P, Baer ZC, Sreekumar S, Gross E, Binder JB, Blanch HW, Clark DS, Toste FD (2012) Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491(7423):235–239

    Article  Google Scholar 

  • Arroyo-López FN, Pérez-Torrado R, Querol A, Barrio E (2010) Modulation of the glycerol and ethanol syntheses in the yeast Saccharomyces kudriavzevii differs from that exhibited by Saccharomyces cerevisiae and their hybrid. Food Microbiol 27(5):628–637

    Article  Google Scholar 

  • Atadashi I, Aroua M, Aziz AA, Sulaiman N (2012) The effects of water on biodiesel production and refining technologies: a review. Renew Sustain Energy Rev 16(5):3456–3470

    Article  Google Scholar 

  • Ayoub M, Abdullah AZ (2012) Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew Sustain Energy Rev 16(5):2671–2686

    Article  Google Scholar 

  • Behling R, Valange S, Chatel G (2016) Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem 18(7):1839–1854

    Article  Google Scholar 

  • Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci 107(10):4516–4521

    Article  Google Scholar 

  • Binder JB, Blank JJ, Cefali AV, Raines RT (2010) Synthesis of furfural from xylose and xylan. Chemsuschem 3(11):1268–1272

    Article  Google Scholar 

  • Bobadilla L, Blay V, Álvarez A, Domínguez M, Romero-Sarria F, Centeno M, Odriozola J (2016) Intensifying glycerol steam reforming on a monolith catalyst: a reaction kinetic model. Chem Eng J 306:933–941

    Article  Google Scholar 

  • Bournay L, Casanave D, Delfort B, Hillion G, Chodorge J (2005) New heterogeneous process for biodiesel production: a way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catal Today 106(1):190–192

    Article  Google Scholar 

  • Bowker M, Davies PR, Al-Mazroai LS (2009) Photocatalytic reforming of glycerol over gold and palladium as an alternative fuel source. Catal Lett 128(3–4):253

    Article  Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554

    Article  Google Scholar 

  • Brandner A, Lehnert K, Bienholz A, Lucas M, Claus P (2009) Production of biomass-derived chemicals and energy: chemocatalytic conversions of glycerol. Top Catal 52(3):278–287

    Article  Google Scholar 

  • Byrd AJ, Pant K, Gupta RB (2008) Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst. Fuel 87(13):2956–2960

    Article  Google Scholar 

  • Cao Q, Guo X, Guan J, Mu X, Zhang D (2011) A process for efficient conversion of fructose into 5-hydroxymethylfurfural in ammonium salts. Appl Catal A 403(1):98–103

    Article  Google Scholar 

  • Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52(3):241

    Article  Google Scholar 

  • Carmona M, Valverde JL, Pérez A, Warchol J, Rodriguez JF (2009) Purification of glycerol/water solutions from biodiesel synthesis by ion exchange: sodium removal Part I. J Chem Technol Biotechnol 84(5):738–744

    Article  Google Scholar 

  • Chakinala AG, Brilman DW, van Swaaij WP, Kersten SR (2009) Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res 49(3):1113–1122

    Article  Google Scholar 

  • Charlier J-C, Michenaud J-P, Gonze X, Vigneron J-P (1991) Tight-binding model for the electronic properties of simple hexagonal graphite. Phys Rev B 44(24):13237

    Article  Google Scholar 

  • Chen W-H, Syu Y-J (2010) Hydrogen production from water gas shift reaction in a high gravity (Higee) environment using a rotating packed bed. Int J Hydrogen Energy 35(19):10179–10189

    Article  Google Scholar 

  • Cheng CK, Foo SY, Adesina AA (2010a) H2-rich synthesis gas production over Co/Al2O3 catalyst via glycerol steam reforming. Catal Commun 12(4):292–298

    Article  Google Scholar 

  • Cheng S, Yang L, Gong F (2010b) Novel branched poly (l-lactide) with poly (glycerol-co-sebacate) core. Polym Bull 65(7):643–655

    Article  Google Scholar 

  • Chiodo V, Freni S, Galvagno A, Mondello N, Frusteri F (2010) Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen. Appl Catal A 381(1):1–7

    Article  Google Scholar 

  • Choudhary V, Pinar AB, Sandler SI, Vlachos DG, Lobo RF (2011) Xylose isomerization to xylulose and its dehydration to furfural in aqueous media. Acs Catalysis 1(12):1724–1728

    Article  Google Scholar 

  • Connors W, Johanson L, Sarkanen K, Winslow P (1980) Thermal degradation of kraft lignin in tetralin. Holzforschung-Int J Biol Chem Phy Technol Wood 34(1):29–37

    Google Scholar 

  • Creasey JJ, Parlett CM, Manayil JC, Isaacs MA, Wilson K, Lee AF (2015) Facile route to conformal hydrotalcite coatings over complex architectures: a hierarchically ordered nanoporous base catalyst for FAME production. Green Chem 17(4):2398–2405

    Article  Google Scholar 

  • Cui Y, Galvita V, Rihko-Struckmann L, Lorenz H, Sundmacher K (2009) Steam reforming of glycerol: the experimental activity of La1–xCexNiO3 catalyst in comparison to the thermodynamic reaction equilibrium. Appl Catal B 90(1):29–37

    Article  Google Scholar 

  • Cydzik-Kwiatkowska A, Wojnowska-Baryła I, Selewska K (2010) Granulation of sludge under different loads of a glycerol fraction from biodiesel production. Eur J Lipid Sci Technol 112(5):609–613

    Google Scholar 

  • Dabral S, Mottweiler J, Rinesch T, Bolm C (2015) Base-catalysed cleavage of lignin β-O-4 model compounds in dimethyl carbonate. Green Chem 17(11):4908–4912

    Article  Google Scholar 

  • Daskalaki VM, Kondarides DI (2009) Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions. Catal Today 144(1):75–80

    Article  Google Scholar 

  • Dave CD, Pant K (2011) Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst. Renew Energy 36(11):3195–3202

    Article  Google Scholar 

  • Devi P, Bethala L, Gangadhar KN, Sai Prasad PS, Jagannadh B, Prasad RB (2009) A Glycerol-based carbon catalyst for the preparation of biodiesel. Chemsuschem 2(7):617–620

    Article  Google Scholar 

  • Dhepe PL, Sahu R (2010) A solid-acid-based process for the conversion of hemicellulose. Green Chem 12(12):2153–2156

    Article  Google Scholar 

  • Dobson R, Gray V, Rumbold K (2012) Microbial utilization of crude glycerol for the production of value-added products. J Ind Microbiol Biotechnol 39(2):217–226

    Article  Google Scholar 

  • Dou B, Dupont V, Williams PT, Chen H, Ding Y (2009) Thermogravimetric kinetics of crude glycerol. Biores Technol 100(9):2613–2620

    Article  Google Scholar 

  • Erdocia X, Prado R, Corcuera MA, Labidi J (2014) Base catalyzed depolymerization of lignin: influence of organosolv lignin nature. Biomass Bioenergy 66:379–386

    Google Scholar 

  • Fan Y, Zhou C, Zhu X (2009) Selective catalysis of lactic acid to produce commodity chemicals. Catal Rev 51(3):293–324

    Article  Google Scholar 

  • Feather MS (1970) The conversion of D-xylose and D-glucuronic acid to 2-furaldehyde. Tetrahedron Lett 11(48):4143–4145

    Article  Google Scholar 

  • Fernández Y, Arenillas A, Díez MA, Pis J, Menéndez J (2009) Pyrolysis of glycerol over activated carbons for syngas production. J Anal Appl Pyrol 84(2):145–150

    Article  Google Scholar 

  • Fernández Y, Arenillas A, Bermúdez JM, Menéndez J (2010) Comparative study of conventional and microwave-assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst. J Anal Appl Pyrol 88(2):155–159

    Article  Google Scholar 

  • Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558

    Article  Google Scholar 

  • Gallo A, Pirovano C, Marelli M, Psaro R, Dal Santo V (2010) Hydrogen production by glycerol steam reforming with Ru-based catalysts: a study on Sn doping. Chem Vap Deposition 16(10–12):305–310

    Article  Google Scholar 

  • Ganesh I, Ravikumar S, Hong SH (2012) Metabolically engineered Escherichia coli as a tool for the production of bioenergy and biochemicals from glycerol. Biotechnol Bioprocess Eng 17(4):671–678

    Article  Google Scholar 

  • Gaspar AR, Gamelas JA, Evtuguin DV, Neto CP (2007) Alternatives for lignocellulosic pulp delignification using polyoxometalates and oxygen: a review. Green Chem 9(7):717–730

    Article  Google Scholar 

  • Geboers JA, Van de Vyver S, Ooms R, de Beeck BO, Jacobs PA, Sels BF (2011) Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls. Catal Sci Technol 1(5):714–726

    Article  Google Scholar 

  • Gupta NK, Nishimura S, Takagaki A, Ebitani K (2011) Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure. Green Chem 13(4):824–827

    Article  Google Scholar 

  • Hadi M, Shariati M, Afsharzadeh S (2008) Microalgal biotechnology: carotenoid and glycerol production by the green algae Dunaliella isolated from the Gave-Khooni salt marsh. Iran Biotechnol Bioprocess Eng 13(5):540–544

    Article  Google Scholar 

  • Hájek M, Skopal F (2010) Treatment of glycerol phase formed by biodiesel production. Biores Technol 101(9):3242–3245

    Article  Google Scholar 

  • Hansen TS, Mielby J, Riisager A (2011) Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water. Green Chem 13(1):109–114

    Article  Google Scholar 

  • He F, Li P, Gu Y, Li G (2009) Glycerol as a promoting medium for electrophilic activation of aldehydes: catalyst-free synthesis of di(indolyl) methanes, xanthene-1,8(2H)-diones and 1-oxo-hexahydroxanthenes. Green Chem 11(11):1767–1773

    Article  Google Scholar 

  • Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139(4):244–260

    Article  Google Scholar 

  • Hu S, Zhang Z, Song J, Zhou Y, Han B (2009) Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chem 11(11):1746–1749

    Article  Google Scholar 

  • Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308(5727):1446–1450

    Article  Google Scholar 

  • Iliuta I, Iliuta MC, Fongarland P, Larachi F (2012) Integrated aqueous-phase glycerol reforming to dimethyl ether synthesis—a novel allothermal dual bed membrane reactor concept. Chem Eng J 187:311–327

    Article  Google Scholar 

  • Ilyushin V, Motiyenko R, Lovas F, Plusquellic D (2008) Microwave spectrum of glycerol: observation of a tunneling chiral isomer. J Mol Spectrosc 251(1):129–137

    Article  Google Scholar 

  • Iriondo A, Barrio V, Cambra J, Arias P, Güemez M, Navarro R, Sánchez-Sánchez M, Fierro J (2008) Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Top Catal 49(1–2):46–58

    Article  Google Scholar 

  • Iriondo A, Barrio V, Cambra J, Arias P, Guemez M, Sanchez-Sanchez M, Navarro R, Fierro J (2010) Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina. Int J Hydrogen Energy 35(20):11622–11633

    Article  Google Scholar 

  • Ismail TNMT, Hassan HA, Hirose S, Taguchi Y, Hatakeyama T, Hatakeyama H (2010) Synthesis and thermal properties of ester-type crosslinked epoxy resins derived from lignosulfonate and glycerol. Polym Int 59(2):181–186

    Google Scholar 

  • Israel A, Obot I, Asuquo J (2008) Recovery of glycerol from spent soap LyeBy-product of soap manufacture. J Chem 5(4):940–945

    Google Scholar 

  • Iulianelli A, Seelam P, Liguori S, Longo T, Keiski R, Calabro V, Basile A (2011) Hydrogen production for PEM fuel cell by gas phase reforming of glycerol as byproduct of bio-diesel. The use of a Pd–Ag membrane reactor at middle reaction temperature. Int J Hydrogen Energy 36(6):3827–3834

    Article  Google Scholar 

  • James OO, Maity S, Usman LA, Ajanaku KO, Ajani OO, Siyanbola TO, Sahu S, Chaubey R (2010a) Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural. Energy Environ Sci 3(12):1833–1850

    Article  Google Scholar 

  • James OO, Mesubi AM, Ako TC, Maity S (2010b) Increasing carbon utilization in Fischer-Tropsch synthesis using H2-deficient or CO2-rich syngas feeds. Fuel Process Technol 91(2):136–144

    Article  Google Scholar 

  • Jerzykiewicz M, Cwielag I, Jerzykiewicz W (2009) The antioxidant and anticorrosive properties of crude glycerol fraction from biodiesel production. J Chem Technol Biotechnol 84(8):1196–1201

    Article  Google Scholar 

  • Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26(4):338–348

    Article  Google Scholar 

  • Johnstone RA, Wilby AH, Entwistle ID (1985) Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds. Chem Rev 85(2):129–170

    Article  Google Scholar 

  • Kaçka A, Dönmez G (2008) Isolation of Dunaliella spp. from a hypersaline lake and their ability to accumulate glycerol. Biores Technol 99(17):8348–8352

    Article  Google Scholar 

  • Kale GR, Kulkarni BD (2010) Thermodynamic analysis of dry autothermal reforming of glycerol. Fuel Process Technol 91(5):520–530

    Article  Google Scholar 

  • Kamwilaisak K, Wright PC (2012) Investigating laccase and titanium dioxide for lignin degradation. Energy Fuels 26(4):2400–2406

    Article  Google Scholar 

  • Karinen R, Vilonen K, Niemelä M (2011) Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. Chemsuschem 4(8):1002–1016

    Article  Google Scholar 

  • Khanna S, Goyal A, Moholkar VS (2012) Microbial conversion of glycerol: present status and future prospects. Crit Rev Biotechnol 32(3):235–262

    Article  Google Scholar 

  • Kim MG, Boyd G, Strickland R (1994) Adhesive properties of furfural-modified phenol-formaldehyde resins as oriented strandboard binders

    Google Scholar 

  • Kim KH, Brown RC, Kieffer M, Bai X (2014) Hydrogen-donor-assisted solvent liquefaction of lignin to short-chain alkylphenols using a micro reactor/gas chromatography system. Energy Fuels 28(10):6429–6437

    Article  Google Scholar 

  • Kleinert M, Barth T (2008) Phenols from lignin. Chem Eng Technol 31(5):736–745

    Article  Google Scholar 

  • Kobayashi H, Ohta H, Fukuoka A (2012) Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. Catal Sci Technol 2(5):869–883

    Article  Google Scholar 

  • Kongjao S, Damronglerd S, Hunsom M (2010) Purification of crude glycerol derived from waste used-oil methyl ester plant. Korean J Chem Eng 27(3):944–949

    Article  Google Scholar 

  • Kongjao S, Damronglerd S, Hunsom M (2011) Electrochemical reforming of an acidic aqueous glycerol solution on Pt electrodes. J Appl Electrochem 41(2):215–222

    Article  Google Scholar 

  • Korpi H, Sippola V, Filpponen I, Sipilä J, Krause O, Leskelä M, Repo T (2006) Copper-2,2′-bipyridines: catalytic performance and structures in aqueous alkaline solutions. Appl Catal A 302(2):250–256

    Article  Google Scholar 

  • Kruger JS, Cleveland NS, Zhang S, Katahira R, Black BA, Chupka GM, Lammens T, Hamilton PG, Biddy MJ, Beckham GT (2016) Lignin depolymerization with nitrate-intercalated hydrotalcite catalysts. ACS Catalysis 6(2):1316–1328

    Article  Google Scholar 

  • Kumari N, Olesen JK, Pedersen CM, Bols M (2011) Synthesis of 5-bromomethylfurfural from cellulose as a potential intermediate for biofuel. Eur J Org Chem 7:1266–1270

    Article  Google Scholar 

  • Kunkes EL, Soares RR, Simonetti DA, Dumesic JA (2009) An integrated catalytic approach for the production of hydrogen by glycerol reforming coupled with water-gas shift. Appl Catal B 90(3):693–698

    Article  Google Scholar 

  • Lakshmi Ch V, Ravuru U, Kotra V, Bankupalli S, Prasad R (2009) Novel route for recovery of glycerol from aqueous solutions by reversible reactions

    Google Scholar 

  • Lalitha K, Sadanandam G, Kumari VD, Subrahmanyam M, Sreedhar B, Hebalkar NY (2010) Highly stabilized and finely dispersed Cu2O/TiO2: a promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol: water mixtures. J Phys Chem C 114(50):22181–22189

    Article  Google Scholar 

  • Lam E, Chong JH, Majid E, Liu Y, Hrapovic S, Leung AC, Luong JH (2012) Carbocatalytic dehydration of xylose to furfural in water. Carbon 50(3):1033–1043

    Article  Google Scholar 

  • Lange JP, van der Heide E, van Buijtenen J, Price R (2012) Furfural—a promising platform for lignocellulosic biofuels. Chemsuschem 5(1):150–166

    Article  Google Scholar 

  • Leung DY, Wu X, Leung M (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87(4):1083–1095

    Article  Google Scholar 

  • Li Q-S, Su M-G, Wang S (2007) Densities and excess molar volumes for binary glycerol + 1-propanol, + 2-propanol, + 1,2-propanediol, and + 1,3-propanediol mixtures at different temperatures. J Chem Eng Data 52(3):1141–1145

    Article  Google Scholar 

  • Lima S, Antunes MM, Pillinger M, Valente AA (2011) Ionic liquids as tools for the acid-catalyzed hydrolysis/dehydration of Saccharides to furanic aldehydes. Chem Cat Chem 3(11):1686–1706

    Google Scholar 

  • Lin Y-C (2013) Catalytic valorization of glycerol to hydrogen and syngas. Int J Hydrogen Energy 38(6):2678–2700

    Article  Google Scholar 

  • Liu Q, Tian M, Ding T, Shi R, Feng Y, Zhang L, Chen D, Tian W (2007) Preparation and characterization of a thermoplastic poly (glycerol sebacate) elastomer by two-step method. J Appl Polym Sci 103(3):1412–1419

    Article  Google Scholar 

  • Liu G, Wu J, Zhang IY, Chen Z-N, Li Y-W, Xu X (2011) Theoretical studies on thermochemistry for conversion of 5-chloromethylfurfural into valuable chemicals. J Phys Chem A 115(46):13628–13641

    Article  Google Scholar 

  • López JÁS, MdlÁM Santos, Pérez AFC, Martín AM (2009) Anaerobic digestion of glycerol derived from biodiesel manufacturing. Biores Technol 100(23):5609–5615

    Article  Google Scholar 

  • Magnusson L-E, Anisimov MP, Koropchak JA (2010) Evidence for sub-3 nanometer neutralized particle detection using glycerol as a condensing fluid. J Aerosol Sci 41(7):637–654

    Article  Google Scholar 

  • Mamman AS, Lee JM, Kim YC, Hwang IT, Park NJ, Hwang YK, Chang JS, Hwang JS (2008) Furfural: hemicellulose/xylosederived biochemical. Biofuels, Bioprod Biorefin 2(5):438–454

    Article  Google Scholar 

  • Manosak R, Limpattayanate S, Hunsom M (2011) Sequential-refining of crude glycerol derived from waste used-oil methyl ester plant via a combined process of chemical and adsorption. Fuel Process Technol 92(1):92–99

    Article  Google Scholar 

  • Marcotullio G, De Jong W (2010) Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions. Green Chem 12(10):1739–1746

    Article  Google Scholar 

  • Marshall A, Haverkamp R (2008) Production of hydrogen by the electrochemical reforming of glycerol–water solutions in a PEM electrolysis cell. Int J Hydrogen Energy 33(17):4649–4654

    Article  Google Scholar 

  • Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem 120(41):8042–8044

    Article  Google Scholar 

  • May A, Salvadó J, Torras C, Montané D (2010) Catalytic gasification of glycerol in supercritical water. Chem Eng J 160(2):751–759

    Article  Google Scholar 

  • Mikkonen KS, Heikkinen S, Soovre A, Peura M, Serimaa R, Talja RA, Helén H, Hyvönen L, Tenkanen M (2009) Films from oat spelt arabinoxylan plasticized with glycerol and sorbitol. J Appl Polym Sci 114(1):457–466

    Article  Google Scholar 

  • Modig T, Granath K, Adler L, Lidén G (2007) Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress. Appl Microbiol Biotechnol 75(2):289

    Article  Google Scholar 

  • Montero JM, Gai P, Wilson K, Lee AF (2009) Structure-sensitive biodiesel synthesis over MgO nanocrystals. Green Chem 11(2):265–268

    Article  Google Scholar 

  • Moreau C, Durand R, Peyron D, Duhamet J, Rivalier P (1998) Selective preparation of furfural from xylose over microporous solid acid catalysts. Ind Crops Prod 7(2):95–99

    Article  Google Scholar 

  • Nascimento JE, Barcellos AM, Sachini M, Perin G, Lenardão EJ, Alves D, Jacob RG, Missau F (2011) Catalyst-free synthesis of octahydroacridines using glycerol as recyclable solvent. Tetrahedron Lett 52(20):2571–2574

    Article  Google Scholar 

  • Nimlos MR, Qian X, Davis M, Himmel ME, Johnson DK (2006) Energetics of xylose decomposition as determined using quantum mechanics modeling. J Phys Chem A 110(42):11824–11838

    Article  Google Scholar 

  • O’Neill R, Ahmad MN, Vanoye L, Aiouache F (2009) Kinetics of aqueous phase dehydration of xylose into furfural catalyzed by ZSM-5 zeolite. Ind Eng Chem Res 48(9):4300–4306

    Article  Google Scholar 

  • Pan Y, Wang X, Yuan Q (2011) Thermal, kinetic, and mechanical properties of glycerol-plasticized wheat gluten. J Appl Polym Sci 121(2):797–804

    Article  Google Scholar 

  • Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34(1):29–41

    Article  Google Scholar 

  • Parzuchowski PG, Grabowska M, Jaroch M, Kusznerczuk M (2009) Synthesis and characterization of hyperbranched polyesters from glycerol-based AB2 monomer. J Polym Sci Part A: Polym Chem 47(15):3860–3868

    Article  Google Scholar 

  • Peng L, Lin L, Zhang J, Zhuang J, Zhang B, Gong Y (2010) Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 15(8):5258–5272

    Article  Google Scholar 

  • Perego C, Bosetti A (2011) Biomass to fuels: the role of zeolite and mesoporous materials. Microporous Mesoporous Mater 144(1):28–39

    Article  Google Scholar 

  • Pompeo F, Santori G, Nichio NN (2010) Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts. Int J Hydrogen Energy 35(17):8912–8920

    Article  Google Scholar 

  • Qi X, Watanabe M, Aida TM, Smith RL (2010) Fast transformation of glucose and di-/polysaccharides into 5-hydroxymethylfurfural by microwave heating in an ionic liquid/catalyst system. Chemsuschem 3(9):1071–1077

    Article  Google Scholar 

  • Qi X, Guo H, Li L (2011) Efficient conversion of fructose to 5-hydroxymethylfurfural catalyzed by sulfated zirconia in ionic liquids. Ind Eng Chem Res 50(13):7985–7989

    Article  Google Scholar 

  • Qi X, Watanabe M, Aida TM, Smith RL (2012) Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid–water mixtures. Biores Technol 109:224–228

    Article  Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344(6185):1246843

    Article  Google Scholar 

  • Rennard DC, Kruger JS, Schmidt LD (2009) Autothermal catalytic partial oxidation of glycerol to syngas and to non-equilibrium products. Chemsuschem 2(1):89–98

    Article  Google Scholar 

  • Roberts V, Fendt S, Lemonidou AA, Li X, Lercher JA (2010) Influence of alkali carbonates on benzyl phenyl ether cleavage pathways in superheated water. Appl Catal B 95(1):71–77

    Article  Google Scholar 

  • Roberts V, Stein V, Reiner T, Lemonidou A, Li X, Lercher JA (2011) Towards quantitative catalytic lignin depolymerization. Chem—Eur J 17(21):5939–5948

    Article  Google Scholar 

  • Román-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312(5782):1933–1937

    Article  Google Scholar 

  • Rosatella AA, Simeonov SP, Frade RF, Afonso CA (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13(4):754–793

    Article  Google Scholar 

  • Saleh J, Tremblay AY, Dubé MA (2010) Glycerol removal from biodiesel using membrane separation technology. Fuel 89(9):2260–2266

    Article  Google Scholar 

  • Santacesaria E, Vicente GM, Di Serio M, Tesser R (2012) Main technologies in biodiesel production: state of the art and future challenges. Catal Today 195(1):2–13

    Article  Google Scholar 

  • Seo H-B, Yeon J-H, Jeong MH, Kang DH, Lee H-Y, Jung K-H (2009) Aeration alleviates ethanol inhibition and glycerol production during fed-batch ethanol fermentation. Biotechnol Bioprocess Eng 14(5):599

    Article  Google Scholar 

  • Sergeev AG, Webb JD, Hartwig JF (2012) A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation. J Am Chem Soc 134(50):20226–20229

    Article  Google Scholar 

  • Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4(1):83–99

    Article  Google Scholar 

  • Serrano-Ruiz JC, Luque R, Sepulveda-Escribano A (2011) Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem Soc Rev 40(11):5266–5281

    Article  Google Scholar 

  • Sharma Y, Singh B, Upadhyay S (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87(12):2355–2373

    Article  Google Scholar 

  • Shi S, Guo H, Yin G (2011a) Synthesis of maleic acid from renewable resources: catalytic oxidation of furfural in liquid media with dioxygen. Catal Commun 12(8):731–733

    Article  Google Scholar 

  • Shi X, Wu Y, Li P, Yi H, Yang M, Wang G (2011b) Catalytic conversion of xylose to furfural over the solid acid/ZrO2-Al2O3/SBA-15 catalysts. Carbohyd Res 346(4):480–487

    Article  Google Scholar 

  • Sitthisa S, Resasco DE (2011) Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu. Pd and Ni Catal Lett 141(6):784–791

    Article  Google Scholar 

  • Son S, Toste FD (2010) Non-oxidative vanadium-catalyzed C–O Bond Cleavage: application to degradation of lignin model compounds. Angew Chem Int Ed 49(22):3791–3794

    Article  Google Scholar 

  • Ståhlberg T, Fu W, Woodley JM, Riisager A (2011) Synthesis of 5-(Hydroxymethyl) furfural in Ionic liquids: paving the way to renewable chemicals. Chemsuschem 4(4):451–458

    Article  Google Scholar 

  • Sturgeon MR, O’Brien MH, Ciesielski PN, Katahira R, Kruger JS, Chmely SC, Hamlin J, Lawrence K, Hunsinger GB, Foust TD (2014) Lignin depolymerisation by nickel supported layered-double hydroxide catalysts. Green Chem 16(2):824–835

    Article  Google Scholar 

  • Sun W, Liu D-Y, Zhu H-Y, Shi L, Sun Q (2010) A new efficient approach to 3-methylindole: vapor-phase synthesis from aniline and glycerol over Cu-based catalyst. Catal Commun 12(2):147–150

    Article  Google Scholar 

  • Taarning E, Osmundsen CM, Yang X, Voss B, Andersen SI, Christensen CH (2011) Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ Sci 4(3):793–804

    Article  Google Scholar 

  • Takagaki A, Ohara M, Nishimura S, Ebitani K (2010) One-pot formation of furfural from xylose via isomerization and successive dehydration reactions over heterogeneous acid and base catalysts. Chem Lett 39(8):838–840

    Article  Google Scholar 

  • Tan KT, Lee KT, Mohamed AR (2010) A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: an optimization study via response surface methodology. Biores Technol 101(3):965–969

    Article  Google Scholar 

  • Tao F, Song H, Chou L (2010) Efficient process for the conversion of xylose to furfural with acidic ionic liquid. Can J Chem 89(1):83–87

    Article  Google Scholar 

  • Thring R (1994) Alkaline degradation of ALCELL® lignin. Biomass Bioenerg 7(1–6):125–130

    Article  Google Scholar 

  • Tizvar R, McLean DD, Kates M, Dubé MA (2009) Optimal separation of glycerol and methyl oleate via liquid–liquid extraction. J Chem Eng Data 54(5):1541–1550

    Article  Google Scholar 

  • Toledano A, Serrano L, Labidi J (2014) Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel 116:617–624

    Article  Google Scholar 

  • Tong X, Ma Y, Li Y (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal A 385(1):1–13

    Article  Google Scholar 

  • Towey J, Soper A, Dougan L (2011) The structure of glycerol in the liquid state: a neutron diffraction study. Phys Chem Chem Phys 13(20):9397–9406

    Article  Google Scholar 

  • Union E (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off J Eur Union 5:2009

    Google Scholar 

  • Vaidya PD, Rodrigues AE (2009) Glycerol reforming for hydrogen production: a review. Chem Eng Technol 32(10):1463–1469

    Article  Google Scholar 

  • Valliyappan T, Bakhshi N, Dalai A (2008a) Pyrolysis of glycerol for the production of hydrogen or syn gas. Biores Technol 99(10):4476–4483

    Article  Google Scholar 

  • Valliyappan T, Ferdous D, Bakhshi N, Dalai A (2008b) Production of hydrogen and syngas via steam gasification of glycerol in a fixed-bed reactor. Top Catal 49(1–2):59–67

    Article  Google Scholar 

  • Vassilev SV, Vassileva CG, Vassilev VS (2015) Advantages and disadvantages of composition and properties of biomass in comparison with coal: an overview. Fuel 158:330–350

    Article  Google Scholar 

  • Vigier KDO, Benguerba A, Barrault J, Jérôme F (2012) Conversion of fructose and inulin to 5-hydroxymethylfurfural in sustainable betaine hydrochloride-based media. Green Chem 14(2):285–289

    Article  Google Scholar 

  • Voitl T, Rudolf von Rohr P (2008) Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols. Chemsuschem 1(8–9):763–769

    Article  Google Scholar 

  • Wang W (2010) Thermodynamic analysis of glycerol partial oxidation for hydrogen production. Fuel Process Technol 91(11):1401–1408

    Article  Google Scholar 

  • Wang Z, Zhuge J, Fang H, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19(3):201–223

    Article  Google Scholar 

  • Wang X, Li M, Wang M, Wang H, Li S, Wang S, Ma X (2009) Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production. Fuel 88(11):2148–2153

    Article  Google Scholar 

  • Wang P, Yu H, Zhan S, Wang S (2011) Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. Biores Technol 102(5):4179–4183

    Article  Google Scholar 

  • West RM, Liu ZY, Peter M, Gärtner CA, Dumesic JA (2008) Carbon–carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system. J Mol Catal A Chem 296(1):18–27

    Article  Google Scholar 

  • White CA, Kennedy JF (1985) In: Higuchi T, Chang H-M, Kirk TK (eds) Recent advances in lignin biodegradation research. Uni Publishers Co., Japan

    Google Scholar 

  • Wolfson A, Dlugy C, Shotland Y, Tavor D (2009) Glycerol as solvent and hydrogen donor in transfer hydrogenation–dehydrogenation reactions. Tetrahedron Lett 50(43):5951–5953

    Article  Google Scholar 

  • Woodford JJ, Dacquin J-P, Wilson K, Lee AF (2012) Better by design: nanoengineered macroporous hydrotalcites for enhanced catalytic biodiesel production. Energy Environ Sci 5(3):6145–6150

    Article  Google Scholar 

  • Xi Y, Davis RJ (2010) Glycerol-intercalated Mg-Al hydrotalcite as a potential solid base catalyst for transesterification. Clays Clay Miner 58(4):475–485

    Article  Google Scholar 

  • Xiang X, He L, Yang Y, Guo B, Tong D, Hu C (2011) A one-pot two-step approach for the catalytic conversion of glucose into 2, 5-diformylfuran. Catal Lett 141(5):735–741

    Article  Google Scholar 

  • Xu C, Arancon RAD, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43(22):7485–7500

    Article  Google Scholar 

  • Yaakob Z, Mohammad M, Alherbawi M, Alam Z, Sopian K (2013) Overview of the production of biodiesel from waste cooking oil. Renew Sustain Energy Rev 18:184–193

    Article  Google Scholar 

  • Yang W, Sen A (2010) One-step catalytic transformation of carbohydrates and cellulosic biomass to 2,5-dimethyltetrahydrofuran for liquid fuels. Chemsuschem 3(5):597–603

    Article  Google Scholar 

  • Ye J, Sha Y, Zhang Y, Yuan Y, Wu H (2011) Glycerol extracting dealcoholization for the biodiesel separation process. Biores Technol 102(7):4759–4765

    Article  Google Scholar 

  • Yong G, Zhang Y, Ying JY (2008) Efficient catalytic system for the selective production of 5-Hydroxymethylfurfural from glucose and fructose. Angew Chem 120(48):9485–9488

    Article  Google Scholar 

  • Zakrzewska ME, Bogel-Łukasik E, Bogel-Łukasik R (2010) Ionic liquid-mediated formation of 5-hydroxymethylfurfural. A promising biomass-derived building block. Chem Rev 111(2):397–417

    Article  Google Scholar 

  • Zhang Z, Zhao ZK (2010) Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Biores Technol 101(3):1111–1114

    Article  Google Scholar 

  • Zhang B, Tang X, Li Y, Xu Y, Shen W (2007) Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts. Int J Hydrogen Energy 32(13):2367–2373

    Article  Google Scholar 

  • Zhang J, Zhuang J, Lin L, Liu S, Zhang Z (2012) Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase. Biomass Bioenerg 39:73–77

    Article  Google Scholar 

  • Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316(5831):1597–1600

    Article  Google Scholar 

  • Zhao Y, Xu Q, Pan T, Zuo Y, Fu Y, Guo Q-X (2013) Depolymerization of lignin by catalytic oxidation with aqueous polyoxometalates. Appl Catal A 467:504–508

    Article  Google Scholar 

  • Zhou C-HC, Beltramini JN, Fan Y-X, Lu GM (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37(3):527–549

    Article  Google Scholar 

  • Zhou C-H, Xia X, Lin C-X, Tong D-S, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40(11):5588–5617

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Bagheri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bagheri, S. (2017). Catalytic Upgrading of Glycerol, Conversion of Biomass Derived Carbohydrates to Fuels and Catalysis in Depolymerization of Lignin. In: Catalysis for Green Energy and Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-43104-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43104-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43103-1

  • Online ISBN: 978-3-319-43104-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics