Skip to main content

Catalysis in Production of Syngas, Hydrogen and Biofuels

  • Chapter
  • First Online:
  • 926 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Efficient, economical, and environmental friendly chemical production usually needs the utilization of catalysis to run at rates that are acceptable. Most of the western standard of living is based on the ability of the chemical industry to convert available raw materials effectively into fuels, chemicals and applicable energy. It is crucial to know the definition of catalysis. Catalyst is defined as a substance that takes part and speed up the rate of a chemical reaction without being consumed by the reaction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aasberg-Petersen K, Hansen J-HB, Christensen T, Dybkjaer I, Christensen PS, Nielsen CS, Madsen SW, Rostrup-Nielsen J (2001) Technologies for large-scale gas conversion. Appl Catal A 221(1):379–387

    Article  Google Scholar 

  • Ahmed S, Krumpelt M (2001) Hydrogen from hydrocarbon fuels for fuel cells. Int J Hydrogen Energy 26(4):291–301

    Article  Google Scholar 

  • Basini L, Guarinoni A, Aragno A (2000) Molecular and temperature aspects in catalytic partial oxidation of methane. J Catal 190(2):284–295

    Article  Google Scholar 

  • Beychok MR (1975) Process and environmental technology for producing SNG and liquid fuels

    Google Scholar 

  • Bezemer GL, Bitter JH, Kuipers HP, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128(12):3956–3964

    Article  Google Scholar 

  • Bizzi M, Saracco G, Schwiedernoch R, Deutschmann O (2004) Modeling the partial oxidation of methane in a fixed bed with detailed chemistry. AIChE J 50(6):1289–1299

    Article  Google Scholar 

  • Blanchard J, Abatzoglou N, Eslahpazir-Esfandabadi R, Gitzhofer F (2010) Fischer–Tropsch synthesis in a slurry reactor using a nanoiron carbide catalyst produced by a plasma spray technique. Ind Eng Chem Res 49(15):6948–6955

    Article  Google Scholar 

  • Boehman AL, Corre OL (2008) Combustion of syngas in internal combustion engines. Combust Sci Technol 180(6):1193–1206

    Article  Google Scholar 

  • Bridgwater A (1995) The technical and economic feasibility of biomass gasification for power generation. Fuel 74(5):631–653

    Article  Google Scholar 

  • Byrd JW, Hickman KA (1992) Do outside directors monitor managers? Evidence from tender offer bids. J Financ Econ 32(2):195–221

    Article  Google Scholar 

  • Chandolias K (2014) Rapid bio-methanation of syngas by high cell-density in reverse membrane bioreactors

    Google Scholar 

  • Chen W, Fan Z, Pan X, Bao X (2008) Effect of confinement in carbon nanotubes on the activity of Fischer–Tropsch iron catalyst. J Am Chem Soc 130(29):9414–9419

    Article  Google Scholar 

  • Christensen JM, Mortensen PM, Trane R, Jensen PA, Jensen AD (2009) Effects of H2S and process conditions in the synthesis of mixed alcohols from syngas over alkali promoted cobalt-molybdenum sulfide. Appl Catal A 366(1):29–43

    Article  Google Scholar 

  • Christensen T, Primdahl I (1994) Improve syngas production using autothermal reforming. Hydrocarbon Process (United States) 73(3)

    Google Scholar 

  • Corella J, Toledo J-M, Molina G (2008) Biomass gasification with pure steam in fluidised bed: 12 variables that affect the effectiveness of the biomass gasifier. Int J Oil Gas Coal Technol 1(1–2):194–207

    Article  Google Scholar 

  • Davis BH (2007) Fischer–Tropsch synthesis: comparison of performances of iron and cobalt catalysts. Ind Eng Chem Res 46(26):8938–8945

    Article  Google Scholar 

  • De Klerk A, Refining F-T (2011) Weinheim. Wiley-VCH Verlag GmbH & Co. KGaA, Germany

    Google Scholar 

  • Durham E, Zhang S, Roberts C (2010) Diesel-length aldehydes and ketones via supercritical Fischer Tropsch synthesis on an iron catalyst. Appl Catal A 386(1):65–73

    Article  Google Scholar 

  • Gamba S, Pellegrini LA, Calemma V, Gambaro C (2010) Liquid fuels from Fischer–Tropsch wax hydrocracking: Isomer distribution. Catal Today 156(1):58–64

    Article  Google Scholar 

  • Ghenciu AF (2002) Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. Curr Opin Solid State Mater Sci 6(5):389–399

    Article  Google Scholar 

  • Göransson K, Söderlind U, He J, Zhang W (2011) Review of syngas production via biomass DFBGs. Renew Sustain Energy Rev 15(1):482–492

    Article  Google Scholar 

  • Grasselli F, Basini G, Bussolati S, Bianco F (2005) Cobalt chloride, a hypoxia-mimicking agent, modulates redox status and functional parameters of cultured swine granulosa cells. Reprod Fertil Dev 17(7):715–720

    Article  Google Scholar 

  • Grunwaldt J-D, Basini L, Clausen BS (2001) In situ EXAFS study of Rh/Al2O3 catalysts for catalytic partial oxidation of methane. J Catal 200(2):321–329

    Article  Google Scholar 

  • Herranz T, Rojas S, Pérez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas. J Catal 243(1):199–211

    Article  Google Scholar 

  • Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139(4):244–260

    Article  Google Scholar 

  • Jakowski N, Wehrenpfennig A, Heise S, Reigber C, Lühr H, Grunwaldt L, Meehan T (2002) GPS radio occultation measurements of the ionosphere from CHAMP: early results. Geophys Res Lett 29(10)

    Google Scholar 

  • Joensen F, Rostrup-Nielsen JR (2002) Conversion of hydrocarbons and alcohols for fuel cells. J Power Sources 105(2):195–201

    Article  Google Scholar 

  • Kaneko T, Derbyshire F, Makino E, Gray D, Tamura M, Li K (2005) Coal liquefaction. Ullmann’s Encycl Ind Chem

    Google Scholar 

  • Kintisch E (2008) The greening of synfuels. Science 320(5874):306–308

    Article  Google Scholar 

  • Leeflang EP, Liu W-M, Hashimoto C, Choudary PV, Schmid CW (1992) Phylogenetic evidence for multiple Alu source genes. J Mol Evol 35(1):7–16

    Article  Google Scholar 

  • Liu S, Gujar AC, Thomas P, Toghiani H, White MG (2009) Synthesis of gasoline-range hydrocarbons over Mo/HZSM-5 catalysts. Appl Catal A 357(1):18–25

    Article  Google Scholar 

  • Ma W, Kugler EL, Wright J, Dadyburjor DB (2006) Mo–Fe catalysts supported on activated carbon for synthesis of liquid fuels by the Fischer–Tropsch process: effect of Mo addition on reducibility, activity, and hydrocarbon selectivity. Energy Fuels 20(6):2299–2307

    Article  Google Scholar 

  • Mentzel UV, Shunmugavel S, Hruby SL, Christensen CH, Holm MS (2009) High yield of liquid range olefins obtained by converting i-propanol over zeolite H-ZSM-5. J Am Chem Soc 131(46):17009–17013

    Article  Google Scholar 

  • Moulijn JA, Van Diepen A, Kapteijn F (2001) Catalyst deactivation: is it predictable? What to do? Appl Catal A 212(1):3–16

    Article  Google Scholar 

  • Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1(1):37–46

    Article  Google Scholar 

  • Oberhammer F, Wilson J, Dive C, Morris I, Hickman J, Wakeling A, Walker PR, Sikorska M (1993) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J 12(9):3679

    Google Scholar 

  • Patzlaff J, Liu Y, Graffmann C, Gaube J (1999) Studies on product distributions of iron and cobalt catalyzed Fischer–Tropsch synthesis. Appl Catal A 186(1):109–119

    Article  Google Scholar 

  • Rostrup-Nielsen JR (1993) Production of synthesis gas. Catal Today 18 (4):305–324

    Google Scholar 

  • Rostrup-Nielsen JR (1994) Catalysis and large-scale conversion of natural gas. Catal Today 21(2–3):257–267

    Article  Google Scholar 

  • Rostrup-Nielsen JR (2000) New aspects of syngas production and use. Catal Today 63(2):159–164

    Article  Google Scholar 

  • Rostrup-Nielsen JR, Christensen TS, Dybkjaer I (1998) Steam reforming of liquid hydrocarbons. Stud Surf Sci Catal 113:81–95

    Article  Google Scholar 

  • Schwiedernoch R, Tischer S, Correa C, Deutschmann O (2003) Experimental and numerical study on the transient behavior of partial oxidation of methane in a catalytic Monolith. Chem Eng Sci 58(3):633–642

    Article  Google Scholar 

  • Simonetti DA, Rass-Hansen J, Kunkes EL, Soares RR, Dumesic JA (2007) Coupling of glycerol processing with Fischer–Tropsch synthesis for production of liquid fuels. Green Chem 9(10):1073–1083

    Article  Google Scholar 

  • Speight JG (2010) The biofuels handbook, vol 5. Royal Society of Chemistry, UK

    Google Scholar 

  • Strunk J, Kaehler K, Xia X, Comotti M, Schueth F, Reinecke T, Muhler M (2009) Au/ZnO as catalyst for methanol synthesis: the role of oxygen vacancies. Appl Catal A 359(1):121–128

    Article  Google Scholar 

  • Tavasoli A, Trépanier M, Abbaslou RMM, Dalai AK, Abatzoglou N (2009) Fischer-Tropsch synthesis on mono-and bimetallic Co and Fe catalysts supported on carbon nanotubes. Fuel Process Technol 90(12):1486–1494

    Article  Google Scholar 

  • Tavasoli A, Trépanier M, Dalai AK, Abatzoglou N (2010) Effects of confinement in carbon nanotubes on the activity, selectivity, and lifetime of Fischer–Tropsch Co/carbon nanotube catalysts. J Chem Eng Data 55(8):2757–2763

    Article  Google Scholar 

  • Thomas JM, Hernandez-Garrido JC, Bell RG (2009) A general strategy for the design of new solid catalysts for environmentally benign conversions. Top Catal 52(12):1630–1639

    Article  Google Scholar 

  • Tijmensen MJ, Faaij AP, Hamelinck CN, van Hardeveld MR (2002) Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenerg 23(2):129–152

    Article  Google Scholar 

  • Trépanier M, Tavasoli A, Dalai AK, Abatzoglou N (2009) Co, Ru and K loadings effects on the activity and selectivity of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis. Appl Catal A 353(2):193–202

    Article  Google Scholar 

  • Woolcock PJ, Brown RC (2013) A review of cleaning technologies for biomass-derived syngas. Biomass Bioenerg 52:54–84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Bagheri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bagheri, S. (2017). Catalysis in Production of Syngas, Hydrogen and Biofuels. In: Catalysis for Green Energy and Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-43104-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43104-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43103-1

  • Online ISBN: 978-3-319-43104-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics