Ambient Particulate Matter and Skin



Ambient particulate matter (PM) is one of the components of ambient air pollution, which can be produced either by natural processes such as volcanic activity or dust storms or by human activity such as fossil fuel combustion or chemical production. In 2012 the WHO reported that 3.7 million deaths are attributed to ambient air pollution worldwide. This places air pollution as the current world’s largest single environmental health risk factor. Recently, there was increasing evidence that ambient PM exposure not only affects the human lung and the cardiovascular system but also exerts negative effects on human skin. In this regard, it has been shown that PM exposure increases the risk of eczema, augments signs of extrinsic skin aging, and influences the physiological skin properties. However, the mechanism(s), how ambient PM exposure causes these effects on the skin, are not well understood up to now.


  1. 1.
    World Health Organization. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. WHO/SDE/PHE/OEH/06.02. 2005.
  2. 2.
    Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. 2008.
  3. 3.
    National Ambient Air Quality Standards (NAAQS). Washington, DC: US Environmental Protection Agency.
  4. 4.
    Van Donkelaar A, Martin R, Brauer M, Kahn R, Levy R, Verduzco C, et al. Global estimates of ambient fine particulate matter concentrations from satellite based aerosol optical depth: development and application. Environ Health Perspect. 2010;118:847–55.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Katsouyanni K, Touloumi G, Samoli E, Gryparis A, Le Tertre A, Monopolis Y, et al. Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 European cities within the APHEA2 Project. Epidemiology. 2001;12:521–31.CrossRefPubMedGoogle Scholar
  6. 6.
    Samet JM, Zeger SL, Dominici F, Curriero F, Coursac I, Dockery DW, Schwartz J, et al. The national morbidity, mortality and air pollution study part II: morbidity and mortality from air pollution in the United States. In: Research report from Health Effects Institute. 2002.
  7. 7.
    Xu MM, Jia YP, Li GX, Liu LQ, Mo YZ, Jin XB, et al. Relationship between ambient fine particles and ventricular repolarization changes and heart rate variability of elderly people with heart disease in Beijing, China. Biomed Environ Sci. 2013;26:629–37.PubMedGoogle Scholar
  8. 8.
    Guo Y, Jia Y, Pan X, Liu H, Wichmann HE. The association between fine particulate air pollution and hospital emergency room visits for cardiovascular diseases in Beijing, China. Sci Total Environ. 2009;407:4826–30.CrossRefPubMedGoogle Scholar
  9. 9.
    Madaniyazi L, Guo Y, Ye X, Kim D, Zhang Y, Pan X. Effects of airborne metals on lung function in inner Mongolian schoolchildren. J Occup Environ Med. 2013;55:80–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Li P, Xin J, Wang Y, Wang S, Li G, Pan X, et al. The acute effects of fine particles on respiratory mortality and morbidity in Beijing, 2004–2009. Int Environ Sci Pollut Res. 2013;20:6433–44.CrossRefGoogle Scholar
  11. 11.
    Ranft U, Schikowski T, Sugiri D, Krutmann J, Krämer U. Long-term exposure to traffic-related particulate matter impairs cognitive function in the elderly. Environ Res. 2009;109(8):1004–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Schikowski T, Vossoughi M, Vierkötter A, Schulte T, Teichert T, Sugiri D, Fehsel K, Tzivian L, Bae IS, Ranft U, Hoffmann B, Probst-Hensch N, Herder C, Krämer U, Luckhaus C. Association of air pollution with cognitive functions and its modification by APOE gene variants in elderly women. Environ Res. 2015;142:10–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Larrieu S, Lefranc A, Gault G, Chatignoux E, Couvy F, Jouves B, et al. Are the short-term effects of air pollution restricted to cardiorespiratory diseases. Am J Epidemiol. 2009;169:1201–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Krämer U, Sugiri D, Ranft U, Krutmann J, von Berg A, Berdel D, et al. Eczema, respiratory allergies, and traffic-related air pollution in birth cohorts from small-town areas. J Dermatol Sci. 2009;56:99–105.CrossRefPubMedGoogle Scholar
  15. 15.
    Morgenstern V, Zutavern A, Cyrys J, Brockow I, Koletzko S, Krämer U, et al. Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med. 2008;177:1331–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Kim J, Kim EH, Oh I, Jung K, Han Y, Cheong HK, et al. Symptoms of atopic dermatitis are influenced by outdoor pollution. J Allergy Clin Immunol. 2013;132:495–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Vierkötter A, Schikowski T, Ranft U, Sugiri D, Matsui M, Krämer U, Krutmann J. Airborne particle exposure and extrinsic skin aging. J Invest Dermatol. 2010;130(12):2719–26.CrossRefPubMedGoogle Scholar
  18. 18.
    Lefebvre MA, Pham DM, Boussouira B, Bernard D, Camus C, Nguyen QL. Evaluation of the impact of urban pollution on the quality of skin: a multicentre study in Mexico. Int J Cosmet Sci. 2015;37(3):329–38.CrossRefPubMedGoogle Scholar
  19. 19.
    Lademann J, Richter H, Schanzer S, Knorr F, Meinke M, Sterry W, Patzelt A. Penetration and storage of particles in human skin: perspectives and safety aspects. Eur J Pharm Biopharm. 2011;77(3):465–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Bolzinger MA, Briançon S, Chevalier Y. Nanoparticles through the skin: managing conflicting results of inorganic and organic particles in cosmetics and pharmaceutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(5):463–78.PubMedGoogle Scholar
  21. 21.
    Donaldson K, Mills N, MacNee W, Robinson S, Newby D. Role of inflammation in cardiopulmonary health effects of PM. Toxicol Appl Pharmacol. 2005;207:483–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Fritsche E, Schäfer C, Calles C, Bernsmann T, Bernshausen T, Wurm M, et al. Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc Natl Acad Sci U S A. 2007;104:8851–6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jux B, Kadow S, Luecke S, Rannug A, Krutmann J, Esser C. The aryl hydrocarbon receptor mediates UVB radiation-induced skin tanning. J Invest Dermatol. 2011;131:203–10.CrossRefPubMedGoogle Scholar
  24. 24.
    Haarmann-Stemmann T, Esser C, Krutmann J. The Janus-Faced role of aryl hydrocarbon receptor signaling in the skin: consequences for prevention and treatment of skin disorders. J Invest Dermatol. 2015;135(11):2572–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Choi H, Shin DW, Kim W, Doh SJ, Lee SH, Noh M. Asian dust storm particles induce a broad toxicological transcriptional program in human epidermal keratinocytes. Toxicol Lett. 2011;200(1–2):92–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Tigges J, Haarmann-Stemmann T, Vogel CF, Grindel A, Hübenthal U, Brenden H, Grether-Beck S, Vielhaber G, Johncock W, Krutmann J, Fritsche E. The new aryl hydrocarbon receptor antagonist E/Z-2-benzylindene-5,6-dimethoxy-3,3-dimethylindan-1-one protects against UVB-induced signal transduction. J Invest Dermatol. 2014;134(2):556–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD. American Heart Association Council on epidemiology and prevention, Council on the kidney in cardiovascular disease, and Council on nutrition, physical activity and metabolism. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2018

Authors and Affiliations

  1. 1.IUF—Leibniz Institut für umweltmedizinische Forschung gGmbHDüsseldorfGermany

Personalised recommendations