Skip to main content

The Impact of Climate Change on Skin and Skin-Related Disease

Abstract

Climate change refers to variation in regional and global climate over an extended period of time. The primary cause of climate change is anthropogenic emissions of greenhouse gases into the atmosphere, particularly carbon dioxide from burning fossil fuels. Climate change will affect human health including the skin, mostly adversely, and cause disease outbreaks. The direct impacts of climate change on the skin include the effects of extreme weather events such as heavy rainfall, floods, droughts, and hurricanes, which can attribute to an increase in skin infections, inflammatory skin diseases, and traumatic skin disorders. The indirect effects of climate change arise from the disruption of natural systems which can cause an increase in vector-borne and waterborne diseases, with many of them causing skin manifestations. Improved knowledge of the effects of climate change on skin and skin-related disease could help to reduce disease outbreaks in the future.

Keywords

  • Skin-related Diseases
  • Ross River Virus (RRV)
  • Sandflies
  • Cutaneous Leishmaniasis
  • Leptospirosis

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-43102-4_3
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-43102-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3

References

  1. Houghton JT, Ding Y, Griggs DJ, et al., editors. Climate change 2001: the scientific basis: contribution of working group i to the third assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2001.

    Google Scholar 

  2. Houghton JT, Meira Filho LG, Callander BA, et al., editors. Climate change 1995: the science of climate change: contribution of working group i to the second assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 1996.

    Google Scholar 

  3. United States Enviromental Protection Agency. http://www.Epa.Gov/climatechange/impacts-adaptation/health.Html. Accessed 3 Jan 2015.

  4. Andersen LK. Global climate change and its dermatological diseases. Int J Dermatol. 2011;50:601–3.

    CrossRef  PubMed  Google Scholar 

  5. Andersen LK, Hercogova J, Wollina U, Davis MD. Climate change and skin disease: a review of the English-language literature. Int J Dermatol. 2012;51:656–61. quiz 659, 661

    CrossRef  PubMed  Google Scholar 

  6. Grover S. Rajeshwari: global warming and its impact on skin disorders. Indian J Dermatol Venereol Leprol. 2009;75:337–9.

    CrossRef  PubMed  Google Scholar 

  7. Balato N, Ayala F, Megna M, Balato A, Patruno C. Climate change and skin. G Ital Dermatol Venereol. 2013;148:135–46.

    CAS  PubMed  Google Scholar 

  8. Vachiramon V, Busaracome P, Chongtrakool P, Puavilai S. Skin diseases during floods in Thailand. J Med Assoc Thail. 2008;91:479–84.

    Google Scholar 

  9. Lee SH, Choi CP, Eun HC, Kwon OS. Skin problems after a tsunami. J Eur Acad Dermatol Venereol. 2006;20:860–3.

    CAS  PubMed  Google Scholar 

  10. Tak S, Bernard BP, Driscoll RJ, Dowell CH. Floodwater exposure and the related health symptoms among firefighters in New Orleans, Louisiana 2005. Am J Ind Med. 2007;50:377–82.

    CrossRef  PubMed  Google Scholar 

  11. Swygard H, Stafford RE. Effects on health of volunteers deployed during a disaster. Am Surg. 2009;75:747–52. discussion 752–743

    PubMed  Google Scholar 

  12. Appelgren P, Farnebo F, Dotevall L, Studahl M, Jonsson B, Petrini B. Late-onset posttraumatic skin and soft-tissue infections caused by rapid-growing mycobacteria in tsunami survivors. Clin Infect Dis. 2008;47:e11–6.

    CrossRef  PubMed  Google Scholar 

  13. Hiransuthikul N, Tantisiriwat W, Lertutsahakul K, Vibhagool A, Boonma P. Skin and soft-tissue infections among tsunami survivors in southern Thailand. Clin Infect Dis. 2005;41:e93–6.

    CrossRef  PubMed  Google Scholar 

  14. Svensson E, Welinder-Olsson C, Claesson BA, Studahl M. Cutaneous melioidosis in a Swedish tourist after the tsunami in 2004. Scand J Infect Dis. 2006;38:71–4.

    CrossRef  PubMed  Google Scholar 

  15. Centers for Disease Control and Prevention (CDC). Infectious disease and dermatologic conditions in evacuees and rescue workers after hurricane katrina--multiple states, August–September, 2005. MMWR Morb Mortal Wkly Rep. 2005;54:961–4.

    Google Scholar 

  16. Stewart JH, Goodman MM. Earthquake urticaria. Cutis. 1989;43:340.

    CAS  PubMed  Google Scholar 

  17. Gupta MA, Gupta AK. Psychodermatology: an update. J Am Acad Dermatol. 1996;34:1030–46.

    CAS  CrossRef  PubMed  Google Scholar 

  18. Leclerc H, Schwartzbrod L, Dei-Cas E. Microbial agents associated with waterborne diseases. Crit Rev Microbiol. 2002;28:371–409.

    CAS  CrossRef  PubMed  Google Scholar 

  19. Jansen A, Stark K, Schneider T, Schoneberg I. Sex differences in clinical leptospirosis in Germany: 1997–2005. Clin Infect Dis. 2007;44:e69–72.

    CrossRef  PubMed  Google Scholar 

  20. Thaipadungpanit J, Wuthiekanun V, Chantratita N, Yimsamran S, Amornchai P, Boonsilp S, Maneeboonyang W, Tharnpoophasiam P, Saiprom N, Mahakunkijcharoen Y, Day NP, Singhasivanon P, Peacock SJ, Limmathurotsakul D. Leptospira species in floodwater during the 2011 floods in the Bangkok Metropolitan Region, Thailand. Am J Trop Med Hyg. 2013;89:794–6.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Agampodi SB, Dahanayaka NJ, Bandaranayaka AK, Perera M, Priyankara S, Weerawansa P, Matthias MA, Vinetz JM. Regional differences of leptospirosis in Sri Lanka: observations from a flood-associated outbreak in 2011. PLoS Negl Trop Dis. 2014;8:e2626.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Smith JK, Young MM, Wilson KL, Craig SB. Leptospirosis following a major flood in central Queensland, Australia. Epidemiol Infect. 2013;141:585–90.

    CAS  CrossRef  PubMed  Google Scholar 

  23. Amilasan AS, Ujiie M, Suzuki M, Salva E, Belo MC, Koizumi N, Yoshimatsu K, Schmidt WP, Marte S, Dimaano EM, Villarama JB, Ariyoshi K. Outbreak of leptospirosis after flood, the Philippines, 2009. Emerg Infect Dis. 2012;18:91–4.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Dechet AM, Parsons M, Rambaran M, Mohamed-Rambaran P, Florendo-Cumbermack A, Persaud S, Baboolal S, Ari MD, Shadomy SV, Zaki SR, Paddock CD, Clark TA, Harris L, Lyon D, Mintz ED. Leptospirosis outbreak following severe flooding: a rapid assessment and mass prophylaxis campaign; Guyana, January–February 2005. PLoS One. 2012;7:e39672.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Horak P, Mikes L, Lichtenbergova L, Skala V, Soldanova M, Brant SV. Avian schistosomes and outbreaks of cercarial dermatitis. Clin Microbiol Rev. 2015;28:165–90.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Wu XH, Zhang SQ, Xu XJ, Huang YX, Steinmann P, Utzinger J, Wang TP, Xu J, Zheng J, Zhou XN. Effect of floods on the transmission of schistosomiasis in the Yangtze river valley, people's Republic of China. Parasitol Int. 2008;57:271–6.

    CrossRef  PubMed  Google Scholar 

  27. Barbosa CS, Leal-Neto OB, Gomes EC, Araujo KC, Domingues AL. The endemisation of schistosomiasis in porto de galinhas, pernambuco, Brazil, 10 years after the first epidemic outbreak. Mem Inst Oswaldo Cruz. 2011;106:878–83.

    CrossRef  PubMed  Google Scholar 

  28. Zhou XN, Yang GJ, Yang K, Wang XH, Hong QB, Sun LP, Malone JB, Kristensen TK, Bergquist NR, Utzinger J. Potential impact of climate change on schistosomiasis transmission in China. Am J Trop Med Hyg. 2008;78:188–94.

    PubMed  Google Scholar 

  29. Khormi HM, Kumar L. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX. Geospat Health. 2014;8:405–15.

    CrossRef  PubMed  Google Scholar 

  30. Mourya DT, Yadav P, Mishra AC. Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus. Am J Trop Med Hyg. 2004;70:346–50.

    CAS  PubMed  Google Scholar 

  31. Gilbert L. Altitudinal patterns of tick and host abundance: a potential role for climate change in regulating tick-borne diseases? Oecologia. 2010;162:217–25.

    CrossRef  PubMed  Google Scholar 

  32. Roy-Dufresne E, Logan T, Simon JA, Chmura GL, Millien V. Poleward expansion of the white-footed mouse (Peromyscus leucopus) under climate change: implications for the spread of lyme disease. PLoS One. 2013;8:e80724.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Hlavacova J, Votypka J, Volf P. The effect of temperature on leishmania (kinetoplastida: trypanosomatidae) development in sand flies. J Med Entomol. 2013;50:955–8.

    CAS  CrossRef  PubMed  Google Scholar 

  34. Centers for disease control and prevention. http://healthmap.Org/dengue/en/. Accessed 8 Jan 2015.

  35. Bolivar-Mejia A, Alarcon-Olave C, Rodriguez-Morales AJ. Skin manifestations of arthropod-borne infection in Latin America. Curr Opin Infect Dis. 2014;27:288–94.

    CrossRef  PubMed  Google Scholar 

  36. Bouzid M, Colon-Gonzalez FJ, Lung T, Lake IR, Hunter PR. Climate change and the emergence of vector-borne diseases in Europe: case study of dengue fever. BMC Public Health. 2014;14:781.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Sang S, Yin W, Bi P, Zhang H, Wang C, Liu X, Chen B, Yang W, Liu Q. Predicting local dengue transmission in Guangzhou, China, through the influence of imported cases, mosquito density and climate variability. PLoS One. 2014;9:e102755.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  38. Banu S, Hu W, Guo Y, Hurst C, Tong S. Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh. Environ Int. 2014;63:137–42.

    CrossRef  PubMed  Google Scholar 

  39. Hii YL, Rocklov J, Ng N, Tang CS, Pang FY, Sauerborn R. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Glob Health Action. 2009;2 doi:10.3402/gha.v2i0.2036.

  40. Williams CR, Mincham G, Ritchie SA, Viennet E, Harley D. Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks. Parasit Vectors. 2014;7:447.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Tilley PA, Fox JD, Jayaraman GC, Preiksaitis JK. Maculopapular rash and tremor are associated with West Nile fever and neurological syndromes. J Neurol Neurosurg Psychiatry. 2007;78:529–31.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Paz S, Semenza JC. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia--a review. Int J Environ Res Public Health. 2013;10:3543–62.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Wang G, Minnis RB, Belant JL, Wax CL. Dry weather induces outbreaks of human West Nile virus infections. BMC Infect Dis. 2010;10:38.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Harrigan RJ, Thomassen HA, Buermann W, Smith TB. A continental risk assessment of West Nile virus under climate change. Glob Chang Biol. 2014;20:2417–25.

    CrossRef  PubMed  Google Scholar 

  45. Chen CC, Jenkins E, Epp T, Waldner C, Curry PS, Soos C. Climate change and West Nile virus in a highly endemic region of North America. Int J Environ Res Public Health. 2013;10:3052–71.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  46. Soverow JE, Wellenius GA, Fisman DN, Mittleman MA. Infectious disease in a warming world: how weather influenced West Nile virus in the United States (2001–2005). Environ Health Perspect. 2009;117:1049–52.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Johnson BJ, Sukhdeo MV. Drought-induced amplification of local and regional West Nile virus infection rates in New Jersey. J Med Entomol. 2013;50:195–204.

    CAS  CrossRef  PubMed  Google Scholar 

  48. Centers for disease control and prevention. www.Cdc.Gov/chikungunya/geo/index.Html. Accessed 5 Jan 2015.

  49. Riyaz N, Riyaz A, Abdul Latheef EN, Anitha PM, Aravindan KP, Nair AS, Shameera P. Cutaneous manifestations of chikungunya during a recent epidemic in Calicut, North Kerala, South India. Indian J Dermatol Venereol Leprol. 2010;76:671–6.

    CrossRef  PubMed  Google Scholar 

  50. Dommar CJ, Lowe R, Robinson M, Rodo X. An agent-based model driven by tropical rainfall to understand the spatio-temporal heterogeneity of a chikungunya outbreak. Acta Trop. 2014;129:61–73.

    CrossRef  PubMed  Google Scholar 

  51. Ditsuwan T, Liabsuetrakul T, Chongsuvivatwong V, Thammapalo S, McNeil E. Assessing the spreading patterns of dengue infection and chikungunya fever outbreaks in lower southern Thailand using a geographic information system. Ann Epidemiol. 2011;21:253–61.

    CrossRef  PubMed  Google Scholar 

  52. Chretien JP, Anyamba A, Bedno SA, Breiman RF, Sang R, Sergon K, Powers AM, Onyango CO, Small J, Tucker CJ, Linthicum KJ. Drought-associated chikungunya emergence along coastal East Africa. Am J Trop Med Hyg. 2007;76:405–7.

    PubMed  Google Scholar 

  53. Anderson SG, French EL. An epidemic exanthem associated with polyarthritis in the Murray valley, 1956. Med J Aust. 1957;44:113–7.

    CAS  PubMed  Google Scholar 

  54. Tong S, Hu W, McMichael AJ. Climate variability and Ross River virus transmission in Townsville Region, Australia, 1985–1996. Tropical Med Int Health. 2004;9:298–304.

    CrossRef  Google Scholar 

  55. Bi P, Hiller JE, Cameron AS, Zhang Y, Givney R. Climate variability and Ross River virus infections in Riverland, South Australia, 1992–2004. Epidemiol Infect. 2009;137:1486–93.

    CAS  CrossRef  PubMed  Google Scholar 

  56. Tomerini DM, Dale PE, Sipe N. Does mosquito control have an effect on mosquito-borne disease? The case of Ross River virus disease and mosquito management in Queensland, Australia. J Am Mosq Control Assoc. 2011;27:39–44.

    CrossRef  PubMed  Google Scholar 

  57. Garza M, Feria Arroyo TP, Casillas EA, Sanchez-Cordero V, Rivaldi CL, Sarkar S. Projected future distributions of vectors of trypanosoma cruzi in North America under climate change scenarios. PLoS Negl Trop Dis. 2014;8:e2818.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Costa J, Dornak LL, Almeida CE, Peterson AT. Distributional potential of the triatoma brasiliensis species complex at present and under scenarios of future climate conditions. Parasit Vectors. 2014;7:238.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  59. Cordovez JM, Rendon LM, Gonzalez C, Guhl F. Using the basic reproduction number to assess the effects of climate change in the risk of chagas disease transmission in Colombia. Acta Trop. 2014;129:74–82.

    CrossRef  PubMed  Google Scholar 

  60. Guzman-Tapia Y, Ramirez-Sierra MJ, Escobedo-Ortegon J, Dumonteil E. Effect of hurricane isidore on triatoma dimidiata distribution and chagas disease transmission risk in the Yucatan Peninsula of Mexico. Am J Trop Med Hyg. 2005;73:1019–25.

    PubMed  Google Scholar 

  61. Asano S, Mori K, Yamazaki K, Sata T, Kanno T, Sato Y, Kojima M, Fujita H, Akaike Y, Wakasa H. Temporal differences of onset between primary skin lesions and regional lymph node lesions for tularemia in japan: a clinicopathologic and immunohistochemical study of 19 skin cases and 54 lymph node cases. Virchows Arch. 2012;460:651–8.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Nakazawa Y, Williams R, Peterson AT, Mead P, Staples E, Gage KL. Climate change effects on plague and tularemia in the United States. Vector Borne Zoonotic Dis. 2007;7:529–40.

    CrossRef  PubMed  Google Scholar 

  63. Balci E, Borlu A, Kilic AU, Demiraslan H, Oksuzkaya A, Doganay M. Tularemia outbreaks in kayseri, turkey: an evaluation of the effect of climate change and climate variability on tularemia outbreaks. J Infect Public Health. 2014;7:125–32.

    CrossRef  PubMed  Google Scholar 

  64. Ryden P, Sjostedt A, Johansson A. Effects of climate change on tularaemia disease activity in Sweden. Glob Health Action. 2009;2 doi:10.3402/gha.v2i0.2063.

  65. Vig DK, Wolgemuth CW. Spatiotemporal evolution of erythema migrans, the hallmark rash of lyme disease. Biophys J. 2014;106:763–8.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  66. Jaenson TG, Lindgren E. The range of ixodes ricinus and the risk of contracting lyme borreliosis will increase northwards when the vegetation period becomes longer. Ticks Tick Borne Dis. 2011;2:44–9.

    CrossRef  PubMed  Google Scholar 

  67. Brownstein JS, Holford TR, Fish D. Effect of climate change on lyme disease risk in North America. EcoHealth. 2005;2:38–46.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  68. Tuite AR, Greer AL, Fisman DN. Effect of latitude on the rate of change in incidence of lyme disease in the United States. CMAJ Open. 2013;1:E43–7.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  69. Ogden NH, Maarouf A, Barker IK, Bigras-Poulin M, Lindsay LR, Morshed MG, O'Callaghan CJ, Ramay F, Waltner-Toews D, Charron DF. Climate change and the potential for range expansion of the lyme disease vector ixodes scapularis in Canada. Int J Parasitol. 2006;36:63–70.

    CAS  CrossRef  PubMed  Google Scholar 

  70. Trajer A, Bobvos J, Paldy A, Krisztalovics K. Association between incidence of lyme disease and spring-early summer season temperature changes in Hungary—1998–2010. Ann Agric Environ Med. 2013;20:245–51.

    PubMed  Google Scholar 

  71. World Health Organization. http://apps.Who.Int/neglected_diseases/ntddata/leishmaniasis/leishmaniasis.Html. Accessed 8 Jan 2015.

  72. Gonzalez C, Wang O, Strutz SE, Gonzalez-Salazar C, Sanchez-Cordero V, Sarkar S. Climate change and risk of leishmaniasis in North America: predictions from ecological niche models of vector and reservoir species. PLoS Negl Trop Dis. 2010;4:e585.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  73. Peterson AT, Shaw J. Lutzomyia vectors for cutaneous leishmaniasis in southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects. Int J Parasitol. 2003;33:919–31.

    CrossRef  PubMed  Google Scholar 

  74. Bounoua L, Kahime K, Houti L, Blakey T, Ebi KL, Zhang P, Imhoff ML, Thome KJ, Dudek C, Sahabi SA, Messouli M, Makhlouf B, El Laamrani A, Boumezzough A. Linking climate to incidence of zoonotic cutaneous leishmaniasis (L. Major) in Pre-Saharan North Africa. Int J Environ Res Public Health. 2013;10:3172–91.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  75. Fischer D, Moeller P, Thomas SM, Naucke TJ, Beierkuhnlein C. Combining climatic projections and dispersal ability: a method for estimating the responses of sandfly vector species to climate change. PLoS Negl Trop Dis. 2011;5:e1407.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  76. Galvez R, Descalzo MA, Guerrero I, Miro G, Molina R. Mapping the current distribution and predicted spread of the leishmaniosis sand fly vector in the Madrid region (Spain) based on environmental variables and expected climate change. Vector Borne Zoonotic Dis. 2011;11:799–806.

    CrossRef  PubMed  Google Scholar 

  77. Jafari N, Shahsanai A, Memarzadeh M, Loghmani A. Prevention of communicable diseases after disaster: a review. J Res Med Sci. 2011;16:956–62.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise K. Andersen M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andersen, L.K. (2018). The Impact of Climate Change on Skin and Skin-Related Disease. In: Krutmann, J., Merk, H. (eds) Environment and Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-43102-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43102-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43100-0

  • Online ISBN: 978-3-319-43102-4

  • eBook Packages: MedicineMedicine (R0)