Control of Variables

  • Cecilia SjoblomEmail author
  • Georgios Liperis


The female reproductive tract creates the optimal environment for the developing embryo. Culture of embryos in vitro can negatively affect embryo viability, development and post-implantation health. In vitro culture of pre-implantation embryos is associated with changes and variations in the physical factors such as pH and temperature of the culture environment. Through standardisation and quality control, we are developing ways to control all variables in the in vitro environment and IVF laboratory, although they are not yet fully optimised and improvement is still required. Further developments in the regulation of the general laboratory environment together with the in vitro variables of pH and optimisation of osmolarity and temperature are much needed to reduce the stress that cultured embryos may be subjected to.


Variables Embryo viability Control In vitro environment IVF laboratory Cultured embryos 


  1. 1.
    Alper MM, et al. Is your IVF programme good? Hum Reprod. 2002;17(1):8–10.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Higdon HL 3rd, et al. Incubator management in an assisted reproductive technology laboratory. Fertil Steril. 2008;89(3):703–10.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bavister BD. Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update. 1995;1(2):91–148.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Swain JE, et al. Thinking big by thinking small: application of microfluidic technology to improve ART. Lab Chip. 2013;13(7):1213–24.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Koustas G, Sjoblom C. Minute changes to the culture environment of mouse pre-implantation embryos affect the health of the conceptus. Asian Pac J Reprod. 2016;5(4):287–94.CrossRefGoogle Scholar
  6. 6.
    Raty S, et al. Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip. 2004;4(3):186–90.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Steeves CL, Baltz JM. Regulation of intracellular glycine as an organic osmolyte in early preimplantation mouse embryos. J Cell Physiol. 2005;204(1):273–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hansen PJ. To be or not to be–determinants of embryonic survival following heat shock. Theriogenology. 2007;68(Suppl 1):S40–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kurz A. Physiology of thermoregulation. Best Pract Res Clin Anaesthesiol. 2008;22(4):627–44.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Neuer A, et al. Monoclonal antibodies to mammalian heat shock proteins impair mouse embryo development in vitro. Hum Reprod. 1998;13(4):987–90.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Yeung QS, et al. The efficacy of test tube warming devices used during oocyte retrieval for IVF. J Assist Reprod Genet. 2004;21(10):355–60.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cooke S, et al. Objective assessments of temperature maintenance using in vitro culture techniques. J Assist Reprod Genet. 2002;19(8):368–75.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Makarevich AV, et al. The effect of hyperthermia in vitro on vitality of rabbit preimplantation embryos. Physiol Res. 2007;56(6):789–96.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Leese HJ, et al. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14(12):667–72.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Pickering SJ, et al. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil Steril. 1990;54(1):102–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Sun XF, et al. Spindle dynamics in living mouse oocytes during meiotic maturation, ageing, cooling and overheating: a study by polarized light microscopy. Zygote. 2004;12(3):241–9.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wang WH, et al. Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy. Hum Reprod. 2001;16(11):2374–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Pollard JW, et al. Effect of ambient temperatures during oocyte recovery on in vitro production of bovine embryos. Theriogenology. 1996;46(5):849–58.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    De Santis L, et al. Polar body morphology and spindle imaging as predictors of oocyte quality. Reprod Biomed Online. 2005;11(1):36–42.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Rienzi L, et al. Meiotic spindle visualization in living human oocytes. Reprod Biomed Online. 2005;10(2):192–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Keefe D, et al. Imaging meiotic spindles by polarization light microscopy: principles and applications to IVF. Reprod Biomed Online. 2003;7(1):24–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Eichenlaub-Ritter U, et al. Spindles, mitochondria and redox potential in ageing oocytes. Reprod Biomed Online. 2004;8(1):45–58.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Tilia L, et al. Is oocyte meiotic spindle morphology associated with embryo ploidy? A prospective cohort study. Fertil Steril. 2016;105(4):1085–1092.e1087.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Korkmaz C, et al. Do quantitative birefringence characteristics of meiotic spindle and zona pellucida have an impact on implantation in single embryo transfer cycles? Arch Gynecol Obstet. 2014;289(2):433–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Madaschi C, et al. Zona pellucida birefringence score and meiotic spindle visualization in relation to embryo development and ICSI outcomes. Reprod Biomed Online. 2009;18(5):681–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Gwazdauskas FC, et al. In vitro preimplantation mouse embryo development with incubation temperatures of 37 and 39 degrees C. J Assist Reprod Genet. 1992;9(2):149–54.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sugiyama S, et al. Effects of increased ambient temperature during IVM and/or IVF on the in vitro development of bovine zygotes. Reprod Domest Anim. 2007;42(3):271–4.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Zhu JQ, et al. Heat stress causes aberrant DNA methylation of H19 and Igf-2r in mouse blastocysts. Mol Cells. 2008;25(2):211–5.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Fujiwara M, et al. Effect of micro-environment maintenance on embryo culture after in-vitro fertilization: comparison of top-load mini incubator and conventional front-load incubator. J Assist Reprod Genet. 2007;24(1):5–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Swain JE. Decisions for the IVF laboratory: comparative analysis of embryo culture incubators. Reprod Biomed Online. 2014;28(5):535–47.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Koustas G. The effects of embryo handling on development and expression of imprinted genes H19 and IGF2, University of Nottingham. PhD thesis. 2011.Google Scholar
  32. 32.
    Butler JM, et al. The heat is on: room temperature affects laboratory equipment--an observational study. J Assist Reprod Genet. 2013;30(10):1389–93.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lane M, Gardner DK. Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod Fertil Dev. 2005;17(3):371–8.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Dale B, et al. Intracellular pH regulation in the human oocyte. Hum Reprod. 1998;13(4):964–70.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lane M. Mechanisms for managing cellular and homeostatic stress in vitro. Theriogenology. 2001;55(1):225–36.PubMedCrossRefGoogle Scholar
  36. 36.
    Zander-Fox DL, et al. Alterations in mouse embryo intracellular pH by DMO during culture impair implantation and fetal growth. Reprod Biomed Online. 2010;21(2):219–29.PubMedCrossRefGoogle Scholar
  37. 37.
    Phillips KP, et al. Intracellular pH regulation in human preimplantation embryos. Hum Reprod. 2000;15(4):896–904.PubMedCrossRefGoogle Scholar
  38. 38.
    Lane M, Gardner DK. Embryo culture medium: which is the best? Best Pract Res Clin Obstet Gynaecol. 2007;21(1):83–100.PubMedCrossRefGoogle Scholar
  39. 39.
    Elder K, et al. Troubleshooting and problem-solving in the IVF laboratory. Cambridge: Cambridge University Press; 2015.CrossRefGoogle Scholar
  40. 40.
    Zhang JQ, et al. Reduction in exposure of human embryos outside the incubator enhances embryo quality and blastulation rate. Reprod Biomed Online. 2010;20(4):510–5.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Edwards LJ, et al. Intracellular pH of the preimplantation mouse embryo: effects of extracellular pH and weak acids. Mol Reprod Dev. 1998;50(4):434–42.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Squirrell JM, et al. Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol Reprod. 2001;64(6):1845–54.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Baltz JM, et al. Apparent absence of Na+/H+ antiport activity in the two-cell mouse embryo. Dev Biol. 1990;138(2):421–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Good NE, et al. Hydrogen ion buffers for biological research. Biochemistry. 1966;5(2):467–77.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Farrell PS, Bavister BD. Short-term exposure of two-cell hamster embryos to collection media is detrimental to viability. Biol Reprod. 1984;31(1):109–14.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Iwasaki T, et al. Studies on a chemically defined medium for in vitro culture of in vitro matured and fertilized porcine oocytes. Theriogenology. 1999;51(4):709–20.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Keskintepe L, Brackett BG. In vitro developmental competence of in vitro-matured bovine oocytes fertilized and cultured in completely defined media. Biol Reprod. 1996;55(2):333–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Will MA, et al. Biological pH buffers in IVF: help or hindrance to success. J Assist Reprod Genet. 2011;28(8):711–24.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Downs SM, Mastropolo AM. Culture conditions affect meiotic regulation in cumulus cell-enclosed mouse oocytes. Mol Reprod Dev. 1997;46(4):551–66.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Palasz AT, et al. The effect of different zwitterionic buffers and PBS used for out-of-incubator procedures during standard in vitro embryo production on development, morphology and gene expression of bovine embryos. Theriogenology. 2008;70(9):1461–70.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Swain JE. Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online. 2010;21(1):6–16.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ernst M, et al. Phenol red mimics biological actions of estradiol: enhancement of osteoblast proliferation in vitro and of type I collagen gene expression in bone and uterus of rats in vivo. J Steroid Biochem. 1989;33(5):907–14.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Zhu Y, et al. Cytotoxicity of phenol red in toxicity assays for carbon nanoparticles. Int J Mol Sci. 2012;13(10):12336–48.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Moreno-Cuevas JE, Sirbasku DA. Estrogen mitogenic action. III. Is phenol red a “red herring”? In Vitro Cell Dev Biol Anim. 2000;36(7):447–64.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kirkegaard K, et al. Choosing the best embryo by time lapse versus standard morphology. Fertil Steril. 2015;103(2):323–32.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Adamson GD, et al. Improved implantation rates of day 3 embryo transfers with the use of an automated time-lapse-enabled test to aid in embryo selection. Fertil Steril. 2016;105(2):369–375.e366.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Minasi MG, et al. Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study. Hum Reprod. 2016;31(10):2245–54.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Rubio I, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287–1294.e1285.CrossRefGoogle Scholar
  59. 59.
    Hwang IS, et al. Osmolarity at early culture stage affects development and expression of apoptosis related genes (Bax-alpha and Bcl-xl) in pre-implantation porcine NT embryos. Mol Reprod Dev. 2008;75(3):464–71.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Menezo Y, et al. The preovulatory follicular fluid in the human: influence of hormonal pretreatment (clomiphene-hCG) on some biochemical and biophysical variables. Int J Fertil. 1982;27(1):47–51.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Biggers JD, et al. The protective action of betaine on the deleterious effects of NaCl on preimplantation mouse embryos in vitro. Mol Reprod Dev. 1993;34(4):380–90.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Dawson KM, Baltz JM. Organic osmolytes and embryos: substrates of the Gly and beta transport systems protect mouse zygotes against the effects of raised osmolarity. Biol Reprod. 1997;56(6):1550–8.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Hammer MA, Baltz JM. Beta-alanine but not taurine can function as an organic osmolyte in preimplantation mouse embryos cultured from fertilized eggs. Mol Reprod Dev. 2003;66(2):153–61.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Baltz JM. Osmoregulation and cell volume regulation in the preimplantation embryo. Curr Top Dev Biol. 2001;52:55–106.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Liu Z, Foote RH. Effects of amino acids on the development of in-vitro matured/in-vitro fertilization bovine embryos in a simple protein-free medium. Hum Reprod. 1995;10(11):2985–91.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Nguyen VT, et al. Stage-specific effects of the osmolarity of a culture medium on the development of parthenogenetic diploids in the pig. Theriogenology. 2003;59(3–4):719–34.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ogawa T, Marrs RP. The effect of protein supplementation on single-cell mouse embryos in vitro. Fertil Steril. 1987;47(1):156–61.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Collins JL, Baltz JM. Estimates of mouse oviductal fluid tonicity based on osmotic responses of embryos. Biol Reprod. 1999;60(5):1188–93.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Yancey PH, et al. Living with water stress: evolution of osmolyte systems. Science. 1982;217(4566):1214–22.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hay-Schmidt A. The influence of osmolality on mouse two-cell development. J Assist Reprod Genet. 1993;10(1):95–8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kruger TF, et al. Osmolarity studies with different containers and volumes in a human in vitro fertilization programme. S Afr Med J. 1985;68(9):651–2.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Lane M, et al. To QC or not to QC: the key to a consistent laboratory? Reprod Fertil Dev. 2008;20(1):23–32.CrossRefGoogle Scholar
  73. 73.
    Quinn P. Culture systems: sequential. Methods Mol Biol. 2012;912:211–30.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Zander-Fox D, Lane M. Media composition: energy sources and metabolism. Methods Mol Biol. 2012;912:81–96.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Menezo Y, et al. New insights into human pre-implantation metabolism in vivo and in vitro. J Assist Reprod Genet. 2013;30(3):293–303.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Khosla S, et al. Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum Reprod Update. 2001;7(4):419–27.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Vergouw CG, et al. The influence of the type of embryo culture medium on neonatal birthweight after single embryo transfer in IVF. Hum Reprod. 2012;27(9):2619–26.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Dale B, DeFelice LJ. Soluble sperm factors, electrical events and egg activation. In: Dale B, editor. Mechanism of fertilization: plants to humans. Berlin, Heidelberg: Springer Berlin Heidelberg; 1990. p. 475–87.CrossRefGoogle Scholar
  79. 79.
    Hiura H, et al. Characterization of DNA methylation errors in patients with imprinting disorders conceived by assisted reproduction technologies. Hum Reprod. 2012;27(8):2541–8.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Mok-Lin E, et al. Urinary bisphenol a concentrations and ovarian response among women undergoing IVF. Int J Androl. 2010;33(2):385–93.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99(2):673–9.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Gardner DK, Lane M. Ex vivo early embryo development and effects on gene expression and imprinting. Reprod Fertil Dev. 2005;17(3):361–70.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Katz-Jaffe MG, et al. A proteomic analysis of mammalian preimplantation embryonic development. Reproduction. 2005;130(6):899–905.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Li W, et al. High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression. Reprod Fertil Dev. 2016;28:948–59.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Wale PL, Gardner DK. Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development. Biol Reprod. 2012;87(1):24.. 21–28.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Wale PL, Gardner DK. Oxygen affects the ability of mouse blastocysts to regulate ammonium. Biol Reprod. 2013;89(3):75.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Maheshwari A, et al. Should we be promoting embryo transfer at blastocyst stage? Reprod Biomed Online. 2016;32(2):142–6.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Meintjes M, et al. A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum Reprod. 2009;24(2):300–7.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Peng H, et al. Better quality and more usable embryos obtained on day 3 cultured in 5% than 20% oxygen: a controlled and randomized study using the sibling oocytes. Reprod Sci. 2016;23(3):372–8.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Gardner DK. The impact of physiological oxygen during culture, and vitrification for cryopreservation, on the outcome of extended culture in human IVF. Reprod Biomed Online. 2016;32(2):137–41.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Cohen J, et al. Ambient air and its potential effects on conception in vitro. Hum Reprod. 1997;12(8):1742–9.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Perin PM, et al. Impact of short-term preconceptional exposure to particulate air pollution on treatment outcome in couples undergoing in vitro fertilization and embryo transfer (IVF/ET). J Assist Reprod Genet. 2010;27(7):371–82.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Herlong JL, et al. Quantitative and qualitative analysis of microorganisms in an assisted reproductive technology facility. Fertil Steril. 2008;89(4):847–53.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Hall J, et al. The origin, effects and control of air pollution in laboratories used for human embryo culture. Hum Reprod. 1998;13(Suppl 4):146–55.CrossRefGoogle Scholar
  95. 95.
    Center for Drug, E et al. Guidance for industry: sterile drug products produced by aseptic processing, current good manufacturing practice, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. 2004.Google Scholar
  96. 96.
    Esteves SC, Bento FC. Air quality control in the ART laboratory is a major determinant of IVF success. Asian J Androl. 2016;18(4):596–9.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Clontz L. Microbial limit and bioburden tests: validation approaches and global requirements. 2nd ed. Boca Raton: CRC Press; 2008.CrossRefGoogle Scholar
  98. 98.
    Grzelak A, et al. Light-dependent generation of reactive oxygen species in cell culture media. Free Radic Biol Med. 2001;30(12):1418–25.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Takenaka M, et al. Effects of light on development of mammalian zygotes. Proc Natl Acad Sci U S A. 2007;104(36):14289–93.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Otsuki J, et al. Damage of embryo development caused by peroxidized mineral oil and its association with albumin in culture. Fertil Steril. 2009;91(5):1745–9.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Grupo de trabajo de la Sociedad. Recomendaciones para la Verificación de la Bioseguridad Ambiental (BSA) respecto a Hongos Oportunistas. 2000.Google Scholar
  102. 102.
    Riley RL, Kaufman JE. Effect of relative humidity on the inactivation of airborne Serratia marcescens by ultraviolet radiation. Appl Microbiol. 1972;23(6):1113–20.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Tucker MJ, Liebermann J. Vitrification in assisted reproduction. 2nd ed. Boca Raton: CRC Press; 2015.CrossRefGoogle Scholar
  104. 104.
    Coucke PM, et al. Monitoring embryo development in chicken eggs using acoustic resonance analysis. Biotechnol Prog. 1997;13(4):474–8.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Kemps BJ, et al. Vibration analysis on incubating eggs and its relation to embryonic development. Biotechnol Prog. 2003;19(3):1022–5.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Matsuura K, et al. Improved development of mouse and human embryos using a tilting embryo culture system. Reprod Biomed Online. 2010;20(3):358–64.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Heo YS, et al. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod. 2010;25(3):613–22.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Isachenko E, et al. Mechanical agitation during the in vitro culture of human pre-implantation embryos drastically increases the pregnancy rate. Clin Lab. 2010;56(11–12):569–76.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Teijon ML, et al. Improvement of fertilization rates of in vitro cultured human embryos by exposure to sound vibrations. J Fertil: Vitro – IVF-Worldwide, Reprod Med Genet Stem Cell Biol. 2015;03(04):1–6.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Westmead Fertility Centre, Institute of Reproductive MedicineUniversity of SydneyWestmeadAustralia

Personalised recommendations