Skip to main content

Traditional Embryo Morphology Evaluation: From the Zygote to the Blastocyst Stage

  • Chapter
  • First Online:
In Vitro Fertilization
  • 2237 Accesses

Abstract

After in vitro fertilization, providers are repeatedly tasked with assessing embryos at various stages to make critical, time-sensitive patient care decisions at each stage of embryo culture using morphological assessments. At the zygote stage, assessment of normal fertilization must occur just before the brief window in which pronuclei are visible closes in order to determine which embryos are suitable to continue in culture. Cleavage-stage assessments must determine whether a patient should transfer early or pursue blastocyst culture before transfer or cryopreservation. Finally, blastocyst morphology assessments must be made to determine if and when embryos are optimally ready for trophectoderm biopsy for cases undergoing genetic screening, if and when embryos are optimally ready for cryopreservation, and, most importantly, which embryos are most likely to become a healthy pregnancy when selecting an embryo for transfer. While molecular and biochemical methods to assess human gamete and embryo reproductive potential are increasingly utilized, the assessment of morphology has been, and will remain, the most widely employed method for embryo selection as it is quick and inexpensive and, although not without faults, has consistently been shown to have predictive value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Technology STSfAR. SART: National summary report https://www.sartcorsonline.com/rptCSR_PublicMultYear.aspx?ClinicPKID=02016. Cited 1 July 2016.

  2. Mehta P, Pauly M. Single vs. Multiple Embryo Transfer2014 09 15. Available from: http://archpedi.jamanetwork.com/article.aspx?articleid=1903016.

  3. Yilmaz N, Engin-Üstün Y, Inal H, Gorkem U, Bardakci Y, Gulerman C. The impact of single embryo transfer policy on pregnancy outcomes after legislative change. Gynecol Endocrinol. 2013;29(6):600–2. https://doi.org/10.3109/09513590.2013.788629. PubMed PMID: 23656390.

    Article  PubMed  Google Scholar 

  4. Gardner DK, Sakkas D. Assessment of embryo viability: the ability to select a single embryo for transfer – a review. Placenta. 2003;24 Suppl B:S5–12. PubMed PMID: 14559024.

    Article  CAS  PubMed  Google Scholar 

  5. Teh WT, McBain J, Rogers P. What is the contribution of embryo-endometrial asynchrony to implantation failure? J Assist Reprod Genet. 2016;33(11):1419–30. https://doi.org/10.1007/s10815-016-0773-6. PubMed PMID: 27480540.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Franasiak JM, Ruiz-Alonso M, Scott RT, Simón C. Both slowly developing embryos and a variable pace of luteal endometrial progression may conspire to prevent normal birth in spite of a capable embryo. Fertil Steril. 2016;105(4):861–6. https://doi.org/10.1016/j.fertnstert.2016.02.030. PubMed PMID: 26940791.

    Article  PubMed  Google Scholar 

  7. Gianaroli L, Magli MC, Ferraretti AP, Lappi M, Borghi E, Ermini B. Oocyte euploidy, pronuclear zygote morphology and embryo chromosomal complement. Hum Reprod. 2007;22(1):241–9. https://doi.org/10.1093/humrep/del334. PubMed PMID: 16936301.

    Article  CAS  PubMed  Google Scholar 

  8. Scott LA, Smith S. The successful use of pronuclear embryo transfers the day following oocyte retrieval. Hum Reprod. 1998;13(4):1003–13. PubMed PMID: 9619562.

    Article  CAS  PubMed  Google Scholar 

  9. Scott L, Alvero R, Leondires M, Miller B. The morphology of human pronuclear embryos is positively related to blastocyst development and implantation. Hum Reprod. 2000;15(11):2394–403. PubMed PMID: 11056141.

    Article  CAS  PubMed  Google Scholar 

  10. Scott L. Pronuclear scoring as a predictor of embryo development. Reprod Biomed Online. 2003;6(2):201–14. PubMed PMID: 12676001.

    Article  PubMed  Google Scholar 

  11. Tesarik J, Greco E. The probability of abnormal preimplantation development can be predicted by a single static observation on pronuclear stage morphology. Hum Reprod. 1999;14(5):1318–23. PubMed PMID: 10325285.

    Article  CAS  PubMed  Google Scholar 

  12. Gianaroli L, Magli MC, Ferraretti AP, Fortini D, Grieco N. Pronuclear morphology and chromosomal abnormalities as scoring criteria for embryo selection. Fertil Steril. 2003;80(2):341–9. PubMed PMID: 12909497.

    Article  PubMed  Google Scholar 

  13. Gras L, Trounson AO. Pregnancy and birth resulting from transfer of a blastocyst observed to have one pronucleus at the time of examination for fertilization. Hum Reprod. 1999;14(7):1869–71. PubMed PMID: 10402407.

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Wang XL, Zhang X, Shen CY, Zhang Z. Live births resulting from 0PN-derived embryos in conventional IVF cycles. J Assist Reprod Genet. 2016;33(3):373–8. https://doi.org/10.1007/s10815-015-0644-6. PubMed PMID: 26749389; PubMed Central PMCID: PMCPMC4785154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Payne D, Flaherty SP, Barry MF, Matthews CD. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum Reprod. 1997;12(3):532–41. PubMed PMID: 9130755.

    Article  CAS  PubMed  Google Scholar 

  16. Nagy ZP, Janssenswillen C, Janssens R, De Vos A, Staessen C, Van de Velde H, et al. Timing of oocyte activation, pronucleus formation and cleavage in humans after intracytoplasmic sperm injection (ICSI) with testicular spermatozoa and after ICSI or in-vitro fertilization on sibling oocytes with ejaculated spermatozoa. Hum Reprod. 1998;13(6):1606–12. PubMed PMID: 9688400.

    Article  CAS  PubMed  Google Scholar 

  17. Levron J, Munné S, Willadsen S, Rosenwaks Z, Cohen J. Male and female genomes associated in a single pronucleus in human zygotes. Biol Reprod. 1995;52(3):653–7. PubMed PMID: 7756458.

    Article  CAS  PubMed  Google Scholar 

  18. Manor D, Kol S, Lewit N, Lightman A, Stein D, Pillar M, et al. Undocumented embryos: do not trash them, FISH them. Hum Reprod. 1996;11(11):2502–6. PubMed PMID: 8981144.

    Article  CAS  PubMed  Google Scholar 

  19. Munné S, Cohen J. Chromosome abnormalities in human embryos. Hum Reprod Update. 1998;4(6):842–55. PubMed PMID: 10098475.

    Article  PubMed  Google Scholar 

  20. Matt DW, Ingram AR, Graff DP, Edelstein MC. Normal birth after single-embryo transfer in a patient with excessive polypronuclear zygote formation following in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2004;82(6):1662–5. https://doi.org/10.1016/j.fertnstert.2004.04.069. PubMed PMID: 15589875.

    Article  PubMed  Google Scholar 

  21. Tesarik J, Kopecny V. Development of human male pronucleus: ultrastructure and timing. Gamete Res. 1989;24(2):135–49. https://doi.org/10.1002/mrd.1120240203. PubMed PMID: 2793054.

    Article  CAS  PubMed  Google Scholar 

  22. Salumets A, Hydén-Granskog C, Suikkari AM, Tiitinen A, Tuuri T. The predictive value of pronuclear morphology of zygotes in the assessment of human embryo quality. Hum Reprod. 2001;16(10):2177–81. PubMed PMID: 11574512.

    Article  CAS  PubMed  Google Scholar 

  23. James AN, Hennessy S, Reggio B, Wiemer K, Larsen F, Cohen J. The limited importance of pronuclear scoring of human zygotes. Hum Reprod. 2006;21(6):1599–604. https://doi.org/10.1093/humrep/del013. PubMed PMID: 16488905.

    Article  PubMed  Google Scholar 

  24. Jaroudi K, Al-Hassan S, Sieck U, Al-Sufyan H, Al-Kabra M, Coskun S. Zygote transfer on day 1 versus cleavage stage embryo transfer on day 3: a prospective randomized trial. Hum Reprod. 2004;19(3):645–8. https://doi.org/10.1093/humrep/deh125. PubMed PMID: 14998964.

    Article  PubMed  Google Scholar 

  25. Ebner T, Moser M, Sommergruber M, Tews G. Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: a review. Hum Reprod Update. 2003;9(3):251–62. PubMed PMID: 12859046.

    Article  CAS  PubMed  Google Scholar 

  26. Stalf T, Herrero J, Mehnert C, Manolopoulos K, Lenhard A, Gips H. Influence of polarization effects in ooplasma and pronuclei on embryo quality and implantation in an IVF program. J Assist Reprod Genet. 2002;19(8):355–62. PubMed PMID: 12182441; PubMed Central PMCID: PMCPMC3455581.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zollner U, Zollner KP, Hartl G, Dietl J, Steck T. The use of a detailed zygote score after IVF/ICSI to obtain good quality blastocysts: the German experience. Hum Reprod. 2002;17(5):1327–33. PubMed PMID: 11980760.

    Article  CAS  PubMed  Google Scholar 

  28. Chamayou S, Romano S, Alecci C, Storaci G, Ragolia C, Palagiano A, et al. Oocyte vitrification modifies nucleolar remodeling and zygote kinetics-a sibling study. J Assist Reprod Genet. 2015;32(4):581–6. https://doi.org/10.1007/s10815-015-0446-x. PubMed PMID: 25701142; PubMed Central PMCID: PMCPMC4380896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnson MH, Day ML. Egg timers: how is developmental time measured in the early vertebrate embryo? BioEssays. 2000;22(1):57–63. https://doi.org/10.1002/(SICI)1521-1878(200001)22:1<57::AID-BIES10>3.0.CO;2-L. PubMed PMID: 10649291.

    Article  CAS  PubMed  Google Scholar 

  30. Sakkas D, Shoukir Y, Chardonnens D, Bianchi PG, Campana A. Early cleavage of human embryos to the two-cell stage after intracytoplasmic sperm injection as an indicator of embryo viability. Hum Reprod. 1998;13(1):182–7. PubMed PMID: 9512254.

    Article  CAS  PubMed  Google Scholar 

  31. Shoukir Y, Campana A, Farley T, Sakkas D. Early cleavage of in-vitro fertilized human embryos to the 2-cell stage: a novel indicator of embryo quality and viability. Hum Reprod. 1997;12(7):1531–6. PubMed PMID: 9262291.

    Article  CAS  PubMed  Google Scholar 

  32. Abeyta M, Behr B. Morphological assessment of embryo viability. Semin Reprod Med. 2014;32(2):114–26. https://doi.org/10.1055/s-0033-1363553. PubMed PMID: 24515906.

    Article  PubMed  Google Scholar 

  33. Montag M, Liebenthron J, Köster M. Which morphological scoring system is relevant in human embryo development? Placenta. 2011;32 Suppl 3:S252–6. https://doi.org/10.1016/j.placenta.2011.07.009. PubMed PMID: 21782239.

    Article  PubMed  Google Scholar 

  34. Bos-Mikich A, Mattos AL, Ferrari AN. Early cleavage of human embryos: an effective method for predicting successful IVF/ICSI outcome. Hum Reprod. 2001;16(12):2658–61. PubMed PMID: 11726591.

    Article  CAS  PubMed  Google Scholar 

  35. Capmany G, Taylor A, Braude PR, Bolton VN. The timing of pronuclear formation, DNA synthesis and cleavage in the human 1-cell embryo. Mol Hum Reprod. 1996;2(5):299–306. PubMed PMID: 9238696.

    Article  CAS  PubMed  Google Scholar 

  36. Fenwick J, Platteau P, Murdoch AP, Herbert M. Time from insemination to first cleavage predicts developmental competence of human preimplantation embryos in vitro. Hum Reprod. 2002;17(2):407–12. PubMed PMID: 11821286.

    Article  CAS  PubMed  Google Scholar 

  37. Fu J, Wang XJ, Wang YW, Sun J, Gemzell-Danielsson K, Sun XX. The influence of early cleavage on embryo developmental potential and IVF/ICSI outcome. J Assist Reprod Genet. 2009;26(8):437–41. https://doi.org/10.1007/s10815-009-9342-6. PubMed PMID: 19789972; PubMed Central PMCID: PMCPMC2767488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giorgetti C, Hans E, Terriou P, Salzmann J, Barry B, Chabert-Orsini V, et al. Early cleavage: an additional predictor of high implantation rate following elective single embryo transfer. Reprod Biomed Online. 2007;14(1):85–91. PubMed PMID: 17207338.

    Article  CAS  PubMed  Google Scholar 

  39. Lundin K, Bergh C, Hardarson T. Early embryo cleavage is a strong indicator of embryo quality in human IVF. Hum Reprod. 2001;16(12):2652–7. PubMed PMID: 11726590.

    Article  CAS  PubMed  Google Scholar 

  40. Terriou P, Giorgetti C, Hans E, Salzmann J, Charles O, Cignetti L, et al. Relationship between even early cleavage and day 2 embryo score and assessment of their predictive value for pregnancy. Reprod Biomed Online. 2007;14(3):294–9. PubMed PMID: 17359580.

    Article  CAS  PubMed  Google Scholar 

  41. Van Montfoort AP, Dumoulin JC, Kester AD, Evers JL. Early cleavage is a valuable addition to existing embryo selection parameters: a study using single embryo transfers. Hum Reprod. 2004;19(9):2103–8. https://doi.org/10.1093/humrep/deh385. PubMed PMID: 15243008.

    Article  PubMed  Google Scholar 

  42. Meseguer M, Herrero J, Tejera A, Hilligsøe KM, Ramsing NB, Remohí J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26(10):2658–71. https://doi.org/10.1093/humrep/der256. PubMed PMID: 21828117.

    Article  PubMed  Google Scholar 

  43. Hlinka D, Kaľatová B, Uhrinová I, Dolinská S, Rutarová J, Rezáčová J, et al. Time-lapse cleavage rating predicts human embryo viability. Physiol Res. 2012;61(5):513–25. PubMed PMID: 22881225.

    CAS  PubMed  Google Scholar 

  44. Glujovsky D, Blake D, Farquhar C, Bardach A. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2012;(7):CD002118. https://doi.org/10.1002/14651858.CD002118.pub4. PubMed PMID: 22786480.

  45. Braga DP, Setti AS, Figueira RC, Iaconelli A, Borges E. The importance of the cleavage stage morphology evaluation for blastocyst transfer in patients with good prognosis. J Assist Reprod Genet. 2014;31(8):1105–10. https://doi.org/10.1007/s10815-014-0266-4. PubMed PMID: 24893729; PubMed Central PMCID: PMCPMC4130936.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gerris J, De Neubourg D, Mangelschots K, Van Royen E, Van de Meerssche M, Valkenburg M. Prevention of twin pregnancy after in-vitro fertilization or intracytoplasmic sperm injection based on strict embryo criteria: a prospective randomized clinical trial. Hum Reprod. 1999;14(10):2581–7. PubMed PMID: 10527991.

    Article  CAS  PubMed  Google Scholar 

  47. Van Royen E, Mangelschots K, De Neubourg D, Valkenburg M, Van de Meerssche M, Ryckaert G, et al. Characterization of a top quality embryo, a step towards single-embryo transfer. Hum Reprod. 1999;14(9):2345–9. PubMed PMID: 10469708.

    Article  PubMed  Google Scholar 

  48. Van Royen E, Mangelschots K, Vercruyssen M, De Neubourg D, Valkenburg M, Ryckaert G, et al. Multinucleation in cleavage stage embryos. Hum Reprod. 2003;18(5):1062–9. PubMed PMID: 12721185.

    Article  PubMed  Google Scholar 

  49. Jackson KV, Ginsburg ES, Hornstein MD, Rein MS, Clarke RN. Multinucleation in normally fertilized embryos is associated with an accelerated ovulation induction response and lower implantation and pregnancy rates in in vitro fertilization-embryo transfer cycles. Fertil Steril. 1998;70(1):60–6. PubMed PMID: 9660422.

    Article  CAS  PubMed  Google Scholar 

  50. Munné S, Cohen J. Unsuitability of multinucleated human blastomeres for preimplantation genetic diagnosis. Hum Reprod. 1993;8(7):1120–5. PubMed PMID: 8408497.

    Article  PubMed  Google Scholar 

  51. Staessen C, Van Steirteghem A. The genetic constitution of multinuclear blastomeres and their derivative daughter blastomeres. Hum Reprod. 1998;13(6):1625–31. PubMed PMID: 9688403.

    Article  CAS  PubMed  Google Scholar 

  52. Tesarík J, Kopecný V, Plachot M, Mandelbaum J. Ultrastructural and autoradiographic observations on multinucleated blastomeres of human cleaving embryos obtained by in-vitro fertilization. Hum Reprod. 1987;2(2):127–36. PubMed PMID: 2438298.

    Article  PubMed  Google Scholar 

  53. Kort DH, Chia G, Treff NR, Tanaka AJ, Xing T, Vensand LB, et al. Human embryos commonly form abnormal nuclei during development: a mechanism of DNA damage, embryonic aneuploidy, and developmental arrest. Hum Reprod. 2016;31(2):312–23. https://doi.org/10.1093/humrep/dev281. PubMed PMID: 26621855.

    Article  CAS  PubMed  Google Scholar 

  54. Kligman I, Benadiva C, Alikani M, Munne S. The presence of multinucleated blastomeres in human embryos is correlated with chromosomal abnormalities. Hum Reprod. 1996;11(7):1492–8. PubMed PMID: 8671491.

    Article  CAS  PubMed  Google Scholar 

  55. Ambroggio J, Gindoff PR, Dayal MB, Khaldi R, Peak D, Frankfurter D, et al. Multinucleation of a sibling blastomere on day 2 suggests unsuitability for embryo transfer in IVF-preimplantation genetic screening cycles. Fertil Steril. 2011;96(4):856–9. https://doi.org/10.1016/j.fertnstert.2011.07.1110. PubMed PMID: 21851938.

    Article  PubMed  Google Scholar 

  56. Pickering SJ, Taylor A, Johnson MH, Braude PR. An analysis of multinucleated blastomere formation in human embryos. Hum Reprod. 1995;10(7):1912–22. PubMed PMID: 8583010.

    Article  CAS  PubMed  Google Scholar 

  57. Van Royen E, Mangelschots K, De Neubourg D, Laureys I, Ryckaert G, Gerris J. Calculating the implantation potential of day 3 embryos in women younger than 38 years of age: a new model. Hum Reprod. 2001;16(2):326–32. PubMed PMID: 11157828.

    Article  PubMed  Google Scholar 

  58. Pelinck MJ, De Vos M, Dekens M, Van der Elst J, De Sutter P, Dhont M. Embryos cultured in vitro with multinucleated blastomeres have poor implantation potential in human in-vitro fertilization and intracytoplasmic sperm injection. Hum Reprod. 1998;13(4):960–3. PubMed PMID: 9619554.

    Article  CAS  PubMed  Google Scholar 

  59. Levy R, Benchaib M, Cordonier H, Souchier C, Guerin JF. Laser scanning confocal imaging of abnormal or arrested human preimplantation embryos. J Assist Reprod Genet. 1998;15(8):485–95. PubMed PMID: 9785196; PubMed Central PMCID: PMCPMC3455047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Winston NJ, Braude PR, Pickering SJ, George MA, Cant A, Currie J, et al. The incidence of abnormal morphology and nucleocytoplasmic ratios in 2-, 3- and 5-day human pre-embryos. Hum Reprod. 1991;6(1):17–24. PubMed PMID: 1874952.

    Article  CAS  PubMed  Google Scholar 

  61. Giorgetti C, Terriou P, Auquier P, Hans E, Spach JL, Salzmann J, et al. Embryo score to predict implantation after in-vitro fertilization: based on 957 single embryo transfers. Hum Reprod. 1995;10(9):2427–31. PubMed PMID: 8530679.

    Article  CAS  PubMed  Google Scholar 

  62. Ziebe S, Petersen K, Lindenberg S, Andersen AG, Gabrielsen A, Andersen AN. Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum Reprod. 1997;12(7):1545–9. PubMed PMID: 9262293.

    Article  CAS  PubMed  Google Scholar 

  63. Alikani M, Calderon G, Tomkin G, Garrisi J, Kokot M, Cohen J. Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Hum Reprod. 2000;15(12):2634–43. PubMed PMID: 11098037.

    Article  CAS  PubMed  Google Scholar 

  64. Gardner RL, Davies TJ. An investigation of the origin and significance of bilateral symmetry of the pronuclear zygote in the mouse. Hum Reprod. 2006;21(2):492–502. https://doi.org/10.1093/humrep/dei318. PubMed PMID: 16210387.

    Article  CAS  PubMed  Google Scholar 

  65. Roux C, Joanne C, Agnani G, Fromm M, Clavequin MC, Bresson JL. Morphometric parameters of living human in-vitro fertilization embryos; importance of the asynchronous division process. Hum Reprod. 1995;10(5):1201–7. PubMed PMID: 7657766.

    Article  CAS  PubMed  Google Scholar 

  66. Scott L, Finn A, O'Leary T, McLellan S, Hill J. Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. Hum Reprod. 2007;22(1):230–40. https://doi.org/10.1093/humrep/del358. PubMed PMID: 16982662.

    Article  CAS  PubMed  Google Scholar 

  67. Guerif F, Le Gouge A, Giraudeau B, Poindron J, Bidault R, Gasnier O, et al. Limited value of morphological assessment at days 1 and 2 to predict blastocyst development potential: a prospective study based on 4042 embryos. Hum Reprod. 2007;22(7):1973–81. https://doi.org/10.1093/humrep/dem100. PubMed PMID: 17496054.

    Article  CAS  PubMed  Google Scholar 

  68. Shapiro BS, Harris DC, Richter KS. Predictive value of 72-hour blastomere cell number on blastocyst development and success of subsequent transfer based on the degree of blastocyst development. Fertil Steril. 2000;73(3):582–6. PubMed PMID: 10689016.

    Article  CAS  PubMed  Google Scholar 

  69. Langley MT, Marek DM, Gardner DK, Doody KM, Doody KJ. Extended embryo culture in human assisted reproduction treatments. Hum Reprod. 2001;16(5):902–8. PubMed PMID: 11331636.

    Article  CAS  PubMed  Google Scholar 

  70. Magli MC, Gianaroli L, Munné S, Ferraretti AP. Incidence of chromosomal abnormalities from a morphologically normal cohort of embryos in poor-prognosis patients. J Assist Reprod Genet. 1998;15(5):297–301. PubMed PMID: 9604763; PubMed Central PMCID: PMCPMC3454748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Puissant F, Van Rysselberge M, Barlow P, Deweze J, Leroy F. Embryo scoring as a prognostic tool in IVF treatment. Hum Reprod. 1987;2(8):705–8. PubMed PMID: 3437050.

    Article  CAS  PubMed  Google Scholar 

  72. Steer CV, Mills CL, Tan SL, Campbell S, Edwards RG. The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer programme. Hum Reprod. 1992;7(1):117–9. PubMed PMID: 1551945.

    Article  CAS  PubMed  Google Scholar 

  73. Jones GM, Trounson AO, Lolatgis N, Wood C. Factors affecting the success of human blastocyst development and pregnancy following in vitro fertilization and embryo transfer. Fertil Steril. 1998;70(6):1022–9. PubMed PMID: 9848289.

    Article  CAS  PubMed  Google Scholar 

  74. Carrillo AJ, Lane B, Pridman DD, Risch PP, Pool TB, Silverman IH, et al. Improved clinical outcomes for in vitro fertilization with delay of embryo transfer from 48 to 72 hours after oocyte retrieval: use of glucose- and phosphate-free media. Fertil Steril. 1998;69(2):329–34. PubMed PMID: 9496350.

    Article  CAS  PubMed  Google Scholar 

  75. Racowsky C, Jackson KV, Cekleniak NA, Fox JH, Hornstein MD, Ginsburg ES. The number of eight-cell embryos is a key determinant for selecting day 3 or day 5 transfer. Fertil Steril. 2000;73(3):558–64. PubMed PMID: 10689013.

    Article  CAS  PubMed  Google Scholar 

  76. Alikani M, Cohen J, Tomkin G, Garrisi GJ, Mack C, Scott RT. Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil Steril. 1999;71(5):836–42. PubMed PMID: 10231042.

    Article  CAS  PubMed  Google Scholar 

  77. Alikani M, Schimmel T, Willadsen SM. Cytoplasmic fragmentation in activated eggs occurs in the cytokinetic phase of the cell cycle, in lieu of normal cytokinesis, and in response to cytoskeletal disorder. Mol Hum Reprod. 2005;11(5):335–44. https://doi.org/10.1093/molehr/gah171. PubMed PMID: 15863451.

    Article  PubMed  Google Scholar 

  78. Jurisicova A, Antenos M, Varmuza S, Tilly JL, Casper RF. Expression of apoptosis-related genes during human preimplantation embryo development: potential roles for the Harakiri gene product and Caspase-3 in blastomere fragmentation. Mol Hum Reprod. 2003;9(3):133–41. PubMed PMID: 12606589.

    Article  CAS  PubMed  Google Scholar 

  79. Perez GI, Tao XJ, Tilly JL. Fragmentation and death (a.k.a. apoptosis) of ovulated oocytes. Mol Hum Reprod. 1999;5(5):414–20. PubMed PMID: 10338364.

    Article  CAS  PubMed  Google Scholar 

  80. Browne RW, Bloom MS, Shelly WB, Ocque AJ, Huddleston HG, Fujimoto VY. Follicular fluid high density lipoprotein-associated micronutrient levels are associated with embryo fragmentation during IVF. J Assist Reprod Genet. 2009;26(11–12):557–60. https://doi.org/10.1007/s10815-009-9367-x. PubMed PMID: 19921421; PubMed Central PMCID: PMCPMC2799562.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fujimoto VY, Kane JP, Ishida BY, Bloom MS, Browne RW. High-density lipoprotein metabolism and the human embryo. Hum Reprod Update. 2010;16(1):20–38. https://doi.org/10.1093/humupd/dmp029. PubMed PMID: 19700490.

    Article  CAS  PubMed  Google Scholar 

  82. Alikani M. Epithelial cadherin distribution in abnormal human pre-implantation embryos. Hum Reprod. 2005;20(12):3369–75. https://doi.org/10.1093/humrep/dei242. PubMed PMID: 16123095.

    Article  CAS  PubMed  Google Scholar 

  83. Lin DP, Huang CC, Wu HM, Cheng TC, Chen CI, Lee MS. Comparison of mitochondrial DNA contents in human embryos with good or poor morphology at the 8-cell stage. Fertil Steril. 2004;81(1):73–9. PubMed PMID: 14711547.

    Article  CAS  PubMed  Google Scholar 

  84. Antczak M, Van Blerkom J. Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains. Hum Reprod. 1999;14(2):429–47. PubMed PMID: 10099991.

    Article  CAS  PubMed  Google Scholar 

  85. Chavez SL, Loewke KE, Han J, Moussavi F, Colls P, Munne S, et al. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun. 2012;3:1251. https://doi.org/10.1038/ncomms2249. PubMed PMID: 23212380; PubMed Central PMCID: PMCPMC3535341.

    Article  CAS  PubMed  Google Scholar 

  86. Racowsky C, Combelles CM, Nureddin A, Pan Y, Finn A, Miles L, et al. Day 3 and day 5 morphological predictors of embryo viability. Reprod Biomed Online. 2003;6(3):323–31. PubMed PMID: 12735868.

    Article  PubMed  Google Scholar 

  87. Hardy K, Stark J, Winston RM. Maintenance of the inner cell mass in human blastocysts from fragmented embryos. Biol Reprod. 2003;68(4):1165–9. https://doi.org/10.1095/biolreprod.102.010090. PubMed PMID: 12606492.

    Article  CAS  PubMed  Google Scholar 

  88. Pellestor F, Girardet A, Andréo B, Arnal F, Humeau C. Relationship between morphology and chromosomal constitution in human preimplantation embryo. Mol Reprod Dev. 1994;39(2):141–6. https://doi.org/10.1002/mrd.1080390204. PubMed PMID: 7826614.

    Article  CAS  PubMed  Google Scholar 

  89. Plachot M, De Grouchy J, Junca AM, Mandelbaum J, Cohen J, Salat-Baroux J. Chromosome analysis of ovocytes and human embryos collected after fertilization in vitro. A model of natural selection against aneuploidy. Rev Fr Gynecol Obstet. 1988;83(10):613–7. PubMed PMID: 3201050.

    CAS  PubMed  Google Scholar 

  90. Van Blerkom J, Davis P, Alexander S. A microscopic and biochemical study of fragmentation phenotypes in stage-appropriate human embryos. Hum Reprod. 2001;16(4):719–29. PubMed PMID: 11278225.

    Article  PubMed  Google Scholar 

  91. Keltz M, Fritz R, Gonzales E, Ozensoy S, Skorupski J, Stein D. Defragmentation of low grade day 3 embryos resulted in sustained reduction in fragmentation, but did not improve compaction or blastulation rates. Fertil Steril. 2010;94(6):2406–8. https://doi.org/10.1016/j.fertnstert.2010.03.014. PubMed PMID: 20403590.

    Article  PubMed  Google Scholar 

  92. Nagy ZP, Taylor T, Elliott T, Massey JB, Kort HI, Shapiro DB. Removal of lysed blastomeres from frozen-thawed embryos improves implantation and pregnancy rates in frozen embryo transfer cycles. Fertil Steril. 2005;84(6):1606–12. https://doi.org/10.1016/j.fertnstert.2005.06.027. PubMed PMID: 16359953.

    Article  PubMed  Google Scholar 

  93. Eftekhari-Yazdi P, Valojerdi MR, Ashtiani SK, Eslaminejad MB, Karimian L. Effect of fragment removal on blastocyst formation and quality of human embryos. Reprod Biomed Online. 2006;13(6):823–32. PubMed PMID: 17169204.

    Article  PubMed  Google Scholar 

  94. Elliott TA, Colturato LF, Taylor TH, Wright G, Kort HI, Nagy ZP. Lysed cell removal promotes frozen-thawed embryo development. Fertil Steril. 2007;87(6):1444–9. https://doi.org/10.1016/j.fertnstert.2006.11.064. PubMed PMID: 17296186.

    Article  PubMed  Google Scholar 

  95. Keltz MD, Skorupski JC, Bradley K, Stein D. Predictors of embryo fragmentation and outcome after fragment removal in in vitro fertilization. Fertil Steril. 2006;86(2):321–4. https://doi.org/10.1016/j.fertnstert.2006.01.048. PubMed PMID: 16824522.

    Article  PubMed  Google Scholar 

  96. Desai NN, Goldstein J, Rowland DY, Goldfarb JM. Morphological evaluation of human embryos and derivation of an embryo quality scoring system specific for day 3 embryos: a preliminary study. Hum Reprod. 2000;15(10):2190–6. PubMed PMID: 11006197.

    Article  CAS  PubMed  Google Scholar 

  97. Hnida C, Ziebe S. Total cytoplasmic volume as biomarker of fragmentation in human embryos. J Assist Reprod Genet. 2004;21(9):335–40. PubMed PMID: 15587147; PubMed Central PMCID: PMCPMC3468268.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hardarson T, Hanson C, Sjögren A, Lundin K. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Reprod. 2001;16(2):313–8. PubMed PMID: 11157826.

    Article  CAS  PubMed  Google Scholar 

  99. Hnida C, Engenheiro E, Ziebe S. Computer-controlled, multilevel, morphometric analysis of blastomere size as biomarker of fragmentation and multinuclearity in human embryos. Hum Reprod. 2004;19(2):288–93. PubMed PMID: 14747169.

    Article  PubMed  Google Scholar 

  100. Ziebe S, Lundin K, Loft A, Bergh C, Nyboe Andersen A, Selleskog U, et al. FISH analysis for chromosomes 13, 16, 18, 21, 22, X and Y in all blastomeres of IVF pre-embryos from 144 randomly selected donated human oocytes and impact on pre-embryo morphology. Hum Reprod. 2003;18(12):2575–81. PubMed PMID: 14645173.

    Article  CAS  PubMed  Google Scholar 

  101. Munné S. Chromosome abnormalities and their relationship to morphology and development of human embryos. Reprod Biomed Online. 2006;12(2):234–53. PubMed PMID: 16478592.

    Article  PubMed  Google Scholar 

  102. Scott L. The biological basis of non-invasive strategies for selection of human oocytes and embryos. Hum Reprod Update. 2003;9(3):237–49. PubMed PMID: 12859045.

    Article  PubMed  Google Scholar 

  103. Tao J, Tamis R, Fink K, Williams B, Nelson-White T, Craig R. The neglected morula/compact stage embryo transfer. Hum Reprod. 2002;17(6):1513–8. PubMed PMID: 12042270.

    Article  PubMed  Google Scholar 

  104. Skiadas CC, Jackson KV, Racowsky C. Early compaction on day 3 may be associated with increased implantation potential. Fertil Steril. 2006;86(5):1386–91. https://doi.org/10.1016/j.fertnstert.2006.03.051. PubMed PMID: 16978618.

    Article  PubMed  Google Scholar 

  105. della Ragione T, Verheyen G, Papanikolaou EG, Van Landuyt L, Devroey P, Van Steirteghem A. Developmental stage on day-5 and fragmentation rate on day-3 can influence the implantation potential of top-quality blastocysts in IVF cycles with single embryo transfer. Reprod Biol Endocrinol. 2007;5:2. https://doi.org/10.1186/1477-7827-5-2. PubMed PMID: 17257401; PubMed Central PMCID: PMCPMC1796880.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Nikas G, Ao A, Winston RM, Handyside AH. Compaction and surface polarity in the human embryo in vitro. Biol Reprod. 1996;55(1):32–7. PubMed PMID: 8793055.

    Article  CAS  PubMed  Google Scholar 

  107. Feil D, Henshaw RC, Lane M. Day 4 embryo selection is equal to Day 5 using a new embryo scoring system validated in single embryo transfers. Hum Reprod. 2008;23(7):1505–10. https://doi.org/10.1093/humrep/dem419. PubMed PMID: 18292597.

    Article  PubMed  Google Scholar 

  108. Rijnders PM, Jansen CA. The predictive value of day 3 embryo morphology regarding blastocyst formation, pregnancy and implantation rate after day 5 transfer following in-vitro fertilization or intracytoplasmic sperm injection. Hum Reprod. 1998;13(1O):2869–73. PubMed PMID: 9804247.

    Article  CAS  PubMed  Google Scholar 

  109. Graham J, Han T, Porter R, Levy M, Stillman R, Tucker MJ. Day 3 morphology is a poor predictor of blastocyst quality in extended culture. Fertil Steril. 2000;74(3):495–7. PubMed PMID: 10973644.

    Article  CAS  PubMed  Google Scholar 

  110. Milki AA, Hinckley MD, Gebhardt J, Dasig D, Westphal LM, Behr B. Accuracy of day 3 criteria for selecting the best embryos. Fertil Steril. 2002;77(6):1191–5. PubMed PMID: 12057727.

    Article  PubMed  Google Scholar 

  111. Hardarson T, Van Landuyt L, Jones G. The blastocyst. Hum Reprod. 2012;27(Suppl 1):i72–91. https://doi.org/10.1093/humrep/des230. PubMed PMID: 22763375.

    Article  PubMed  Google Scholar 

  112. Embryology ASiRMaESIGo. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26(6):1270–83. https://doi.org/10.1093/humrep/der037. PubMed PMID: 21502182.

    Article  Google Scholar 

  113. Gardner DK, Schoolcraft WB. Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol. 1999;11(3):307–11. PubMed PMID: 10369209.

    Article  CAS  PubMed  Google Scholar 

  114. Schoolcraft WB, Gardner DK, Lane M, Schlenker T, Hamilton F, Meldrum DR. Blastocyst culture and transfer: analysis of results and parameters affecting outcome in two in vitro fertilization programs. Fertil Steril. 1999;72(4):604–9. PubMed PMID: 10521095.

    Article  CAS  PubMed  Google Scholar 

  115. Kort JD, Lathi RB, Brookfield K, Baker VL, Zhao Q, Behr BR. Aneuploidy rates and blastocyst formation after biopsy of morulae and early blastocysts on day 5. J Assist Reprod Genet. 2015;32(6):925–30. https://doi.org/10.1007/s10815-015-0475-5. PubMed PMID: 25921084; PubMed Central PMCID: PMCPMC4491071.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rodriguez-Purata J, Gingold J, Lee J, Whitehouse M, Slifkin R, Briton-Jones C, et al. Hatching status before embryo transfer is not correlated with implantation rate in chromosomally screened blastocysts. Hum Reprod. 2016;31(11):2458–70. https://doi.org/10.1093/humrep/dew205. PubMed PMID: 27619770.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril. 2011;96(2):344–8. https://doi.org/10.1016/j.fertnstert.2011.05.050. PubMed PMID: 21737072.

    Article  PubMed  Google Scholar 

  118. Shapiro BS, Daneshmand ST, Restrepo H, Garner FC, Aguirre M, Hudson C. Matched-cohort comparison of single-embryo transfers in fresh and frozen-thawed embryo transfer cycles. Fertil Steril. 2013;99(2):389–92. https://doi.org/10.1016/j.fertnstert.2012.09.044. PubMed PMID: 23062733.

    Article  PubMed  Google Scholar 

  119. Haas J, Meriano J, Laskin C, Bentov Y, Barzilay E, Casper RF, et al. Clinical pregnancy rate following frozen embryo transfer is higher with blastocysts vitrified on day 5 than on day 6. J Assist Reprod Genet. 2016;33:1553. https://doi.org/10.1007/s10815-016-0818-x. PubMed PMID: 27714479.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Richter KS, Harris DC, Daneshmand ST, Shapiro BS. Quantitative grading of a human blastocyst: optimal inner cell mass size and shape. Fertil Steril. 2001;76(6):1157–67. PubMed PMID: 11730744.

    Article  CAS  PubMed  Google Scholar 

  121. Ahlström A, Westin C, Reismer E, Wikland M, Hardarson T. Trophectoderm morphology: an important parameter for predicting live birth after single blastocyst transfer. Hum Reprod. 2011;26(12):3289–96. https://doi.org/10.1093/humrep/der325. PubMed PMID: 21972253.

    Article  PubMed  Google Scholar 

  122. Goto S, Kadowaki T, Tanaka S, Hashimoto H, Kokeguchi S, Shiotani M. Prediction of pregnancy rate by blastocyst morphological score and age, based on 1,488 single frozen-thawed blastocyst transfer cycles. Fertil Steril. 2011;95(3):948–52. https://doi.org/10.1016/j.fertnstert.2010.06.067. PubMed PMID: 20674914.

    Article  PubMed  Google Scholar 

  123. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73(6):1155–8. PubMed PMID: 10856474.

    Article  CAS  PubMed  Google Scholar 

  124. Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98(6):1481–9.e10. https://doi.org/10.1016/j.fertnstert.2012.08.016. PubMed PMID: 22975113.

    Article  PubMed  Google Scholar 

  125. Rubio I, Galán A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287–94.e5. https://doi.org/10.1016/j.fertnstert.2014.07.738. PubMed PMID: 25217875.

    Article  PubMed  Google Scholar 

  126. Racowsky C, Kovacs P, Martins WP. A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go? J Assist Reprod Genet. 2015;32(7):1025–30. https://doi.org/10.1007/s10815-015-0510-6. PubMed PMID: 26126876; PubMed Central PMCID: PMCPMC4531870.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Conaghan J, Chen AA, Willman SP, Ivani K, Chenette PE, Boostanfar R, et al. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril. 2013;100(2):412–9.e5. https://doi.org/10.1016/j.fertnstert.2013.04.021. PubMed PMID: 23721712.

    Article  PubMed  Google Scholar 

  128. Adamson GD, Abusief ME, Palao L, Witmer J, Palao LM, Gvakharia M. Improved implantation rates of day 3 embryo transfers with the use of an automated time-lapse-enabled test to aid in embryo selection. Fertil Steril. 2016;105(2):369–75.e6. https://doi.org/10.1016/j.fertnstert.2015.10.030. PubMed PMID: 26604069.

    Article  PubMed  Google Scholar 

  129. Rhenman A, Berglund L, Brodin T, Olovsson M, Milton K, Hadziosmanovic N, et al. Which set of embryo variables is most predictive for live birth? A prospective study in 6252 single embryo transfers to construct an embryo score for the ranking and selection of embryos. Hum Reprod. 2015;30(1):28–36. https://doi.org/10.1093/humrep/deu295. PubMed PMID: 25376459.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Kort .

Editor information

Editors and Affiliations

Review Questions

Review Questions

  1. 1.

    How many hours after conventional insemination or intracytoplasmic sperm injection should the fertilization check be performed?

    • 10–12

    • 14–16

    • 1618

    • 18–20

  2. 2.

    Which are the attributes of pronuclei assessed in most pronuclear scoring systems?

    • (A) Size

    • (B) Symmetry

    • (C) Location

    • (D) Position

    • (E) B, C, and D

  3. 3.

    True or False: Embryos undergoing cleavage from 1 to ≥3 cells have significantly higher implantation rates than other embryos.

  4. 4.

    What number of cells on day 3 of development correlates with higher rates of implantation?

    • (A) 4

    • (B) 4–6

    • (C) 7–9

    • (D) 10–12

  5. 5.

    Which micromanipulation technique may confound blastocyst grading?

    • (A) Intracytoplasmic sperm injection

    • (B) Laser-assisted hatching

    • (C) Trophectoderm biopsy

    • (D) Delayed stripping of cumulus cells

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kort, J., Behr, B. (2019). Traditional Embryo Morphology Evaluation: From the Zygote to the Blastocyst Stage. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) In Vitro Fertilization. Springer, Cham. https://doi.org/10.1007/978-3-319-43011-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43011-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43010-2

  • Online ISBN: 978-3-319-43011-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics