Advertisement

Oocyte Treatment and Preparation for Microinjection

  • Thomas EbnerEmail author
Chapter

Abstract

ICSI is the only technology in IVF labs that requires manipulation of both female and male gametes. Optimal outcome is only guaranteed if culture conditions and time management is optimized. This chapter not only evaluates the critical major steps of the in vitro process, such as scoring the cumulus-oocyte complexes, denudation of the oocytes, processing the spermatozoa, and ICSI, but also deals with pitfalls (presence of immotile sperm or failed fertilization) and approaches how to avoid these (artificial oocyte activation, artificial restoration of sperm motility). In addition, modified ICSI techniques are presented that allow for a better outcome in selected cases.

Keywords

Artificial activation Cumulus-oocyte complex Gamete selection ICSI Oocyte Spermatozoa 

References

  1. 1.
    Van de Velde H, De Vos A, Joris H, et al. Effect of timing of oocyte denudation and micro-injection on survival, fertilization and embryo quality after intracytoplasmic sperm injection. Hum Reprod. 1998;13:31603164.Google Scholar
  2. 2.
    Dozortsev D, Nagy P, Abdelmassih S, et al. The optimal time for intracytoplasmic sperm injection in the human is from 37 to 41 hours after administration of human chorionic gonadotropin. Fertil Steril. 2004;82:1492–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Veeck LL. The human oocyte. In: Veck LL, editor. An atlas of human gametes and conceptuses. 1st ed. New York/London: Parthenon Publishing; 1999. p. 19–24.CrossRefGoogle Scholar
  4. 4.
    Ebner T, Moser M, Shebl O, et al. Blood clots in the cumulus-oocyte complex predict poor oocyte quality and post-fertilization development. Reprod Biomed Online. 2008;16:801–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Rattanachaiyanont M, Leader A, Léveillé MC. Lack of correlation between oocyte-corona-cumulus complex morphology and nuclear maturity of oocytes collected in stimulated cycles for intracytoplasmic sperm injection. Fertil Steril. 1999;71:937–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Daya S, Kohut J, Gunby J, et al. Influence of blood clots in the cumulus complex on oocyte fertilization and cleavage. Hum Reprod. 1990;5:744–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Stanger JD, Stevenson K, Lakmaker A, et al. Pregnancy following fertilization of zon free, coronal cell intact human ova. Hum Reprod. 2001;16:164–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Xie Y, Wang F, Puscheck EE, et al. Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos. Mol Reprod Dev. 2007;74:1287–94.PubMedCrossRefGoogle Scholar
  9. 9.
    Van de Velde H, Nagy ZP, Joris H, et al. Effects of different hyaluronidase concentrations and mechanical procedures for cumulus cell removal on the outcome of intracytoplasmic sperm injection. Hum Reprod. 1997;12:2246–50.PubMedCrossRefGoogle Scholar
  10. 10.
    Parinaud J, Vieitez G, Milhet P, et al. Use of a plant enzyme preparation (Coronase) instead of hyaluronidase for cumulus cell removal before intracytoplasmic sperm injection. Hum Reprod. 1998;13:1933–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Ebner T, Moser M, Sommergruber M, et al. Incomplete denudation of oocytes prior to ICSI enhances embryo quality and blastocyst development. Hum Reprod. 2006;21:2972–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Rubino P, Viganó P, Luddi A, et al. The ICSI procedure from past to future: a systematic review of the more controversial aspects. Hum Reprod Update. 2016;22:194–227.PubMedGoogle Scholar
  13. 13.
    Corn CM, Hauser-Kronberger C, Moser M, et al. Predictive value of cumulus cell apoptosis with regard to blastocyst development of corresponding gametes. Fertil Steril. 2005;84:627–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Cheng EH, Chen SU, Lee TH, et al. Evaluation of telomere length in cumulus cells as a potential biomarker of oocyte and embryo quality. Hum Reprod. 2013;28:929–36.PubMedCrossRefGoogle Scholar
  15. 15.
    Wathlet S, Adriaenssens T, Segers I, et al. New candidate genes to predict pregnancy outcome in single embryo transfer cycles when using cumulus cell gene expression. Fertil Steril. 2012;98:432–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Hussein TS, Froiland DA, Amato F, et al. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118:5257–68.PubMedCrossRefGoogle Scholar
  17. 17.
    Ebner T, Shebl O, Holzer S, et al. Viability of cumulus cells is associated with basal AMH levels in assisted reproduction. Eur J Obstet Gynecol Reprod Biol. 2014;183:59–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Hlinka D, Herman M, Veselá J, et al. A modified method of intracytoplasmic sperm injection without the use of polyvinylpyrrolidone. Hum Reprod. 1998;13:1922–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Woodward BJ, Campbell KH, Ramsewak SS. A comparison of headfirst and tailfirst microinjection of sperm at intracytoplasmic sperm injection. Fertil Steril. 2007;89:711–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Ebner T, Moser M, Sommergruber M, et al. Occurrence and developmental consequences of vacuoles throughout preimplantation development. Fert Stert. 2005;83:1635–40.CrossRefGoogle Scholar
  21. 21.
    Barak Y, Menezo Y, Veiga A, et al. A physiological replacement for polyvinylpyrrolidone (PVP) in assisted reproductive technology. Hum fertile. 1999;4:99–103.CrossRefGoogle Scholar
  22. 22.
    Parmegiani L, Cognigni GE, Bernardi S, et al. Physiologic ICSI: hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril. 2010;93:598–604.PubMedCrossRefGoogle Scholar
  23. 23.
    Van den Bergh M, Bertrand E, Biramane J, et al. Importance of breaking a spermatozoon‘s tail before intracytoplasmic injection: a prospective randomized trial. Hum Reprod. 1995;10:2819–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Dozortsev D, Qian C, Ermilov A, et al. Sperm-associated oocyte-activating factor is released from the spermatozoon within 30 minutes after injection as a result of the sperm-oocyte interaction. Hum Reprod. 1997;12:2792–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Yong HY, Pyo BS, Hong JY, et al. A modified method for ICSI in the pig: injection of head membrane-damaged sperm using a 3–4 μm diameter injection pipette. Hum Reprod. 2003;18:2390–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Balhorn R. Mammalian protamine: structures and molecular interactions. In: Adolph KW, editor. Molecular biology of chromosome function. New York: Springer; 1989. p. 366–95.CrossRefGoogle Scholar
  27. 27.
    Palermo GD, Schlegel P, Colombero LT, et al. Aggressive sperm immobilization prior to intracytoplasmic sperm injection with immature spermatozoa improves fertilization and pregnancy rates. Hum Reprod. 1996;11:1023–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Montag M, Rink K, Delacrétaz G, et al. Laser-induced immobilization and plasma membrane permeabilization in human spermatozoa. Hum Reprod. 2000;15:546–852.CrossRefGoogle Scholar
  29. 29.
    Ebner T, Yaman C, Moser M, et al. Laser assisted immobilization of spermatozoa prior to intracytoplasmic sperm injection in humans. Hum Reprod. 2001;16:2628–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Ebner T, Moser M, Yaman C, et al. Successful birth after laser assisted immobilization of spermatozoa before intracytoplasmic injection. Fertil Steril. 2002;78:417–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Yanagida K, Katayose H, Yazawa H, et al. The usefulness of a piezo-micromanipulator in intracytoplasmic sperm injection in humans. Hum Reprod. 1999;14:448–53.PubMedCrossRefGoogle Scholar
  32. 32.
    Yanagida K, Katayose H, Hirata S, et al. Influence of sperm immobilization on onset of Ca2+ oscillations after ICSI. Hum Reprod. 2001;16:148–52.PubMedCrossRefGoogle Scholar
  33. 33.
    Bartoov B, Berkovitz A, Eltes F, et al. Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril. 2003;80:1413–9.PubMedCrossRefGoogle Scholar
  34. 34.
    World Health organization. WHO laboratory manual for the examination of human semen and semen-cervical mucus interaction. 3rd ed. Cambridge: Cambridge University Press; 1987.Google Scholar
  35. 35.
    Kruger TF, Menkveld R, Stander FSH, et al. Sperm morphologic features as a prognostic factor in in vitro fertilization. Fertil Steril. 1986;46:1118–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Huszar G, Jak A, Sakkas D, et al. Fertility testing and ICSI sperm selection by hyaluronic acid binding: clinical and genetics aspects. Reprod Biomed Online. 2007;14:650–63.PubMedCrossRefGoogle Scholar
  37. 37.
    Van Den Bergh MJ, Fahy-Deshe M, Hohl MK. Pronuclear zygote score following intracytoplasmic injection of hyaluronan-bound spermatozoa: a prospective randomized study. Reprod Biomed Online. 2009;19:796–801.CrossRefGoogle Scholar
  38. 38.
    Parmegiani L, Cognigni GE, Ciampaglia W, et al. Efficiency of hyaluronic acid (HA) sperm selection. J Assist Reprod genetics. 2010;27:13–6. in press.CrossRefGoogle Scholar
  39. 39.
    Paes Almeida Ferreira de Braga D, Iaconelli A Jr, Cassia Savio de Figueira R, et al. Outcome of ICSI using zona pellucida-bound spermatozoa and conventionally selected spermatozoa. Reprod Biomed Online. 2009;19:802–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Ebner T, Shebl O, Moser M, et al. Easy sperm processing technique allowing exclusive accumulation and later usage of DNA-strandbreak-free spermatozoa. Reprod Biomed Online. 2011;22:37–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Seiringer M, Maurer M, Shebl O, et al. Efficacy of a sperm-selection chamber in terms of morphology, aneuploidy and DNA packaging. Reprod Biomed Online. 2013;27:81–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Ebner T, Moser M, Sommergruber M, et al. Presence, but not type or degree of extension, of a cytoplasmic halo has a significant influence on preimplantation development and implantation behaviour. Hum Reprod. 2003;18:2406–12.PubMedCrossRefGoogle Scholar
  43. 43.
    De Oliveira NM, Sanchez R, Fiesta S, et al. Pregnancy with frozen–thawed and fresh testicular biopsy after motile and immotile sperm microinjection, using the mechanical touch technique to assess viability. Hum Reprod. 2004;19:262–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Casper RF, Meriano JS, Jarvi KA, et al. The hypo-osmotic swelling test for selection of viable sperm for intracytoplasmic sperm injection in men with complete asthenozoospermia. Fertil Steril. 1996;65:972–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu J, Tsai YL, Katz E, et al. High fertilization rate obtained after intracytoplasmic sperm injection with 100% nonmotile spermatozoa selected by using a simple modified hypo-osmotic swelling test. Fertil Steril. 1997;68:373–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Aktan TM, Montag M, Duman S, et al. Use of a laser to detect viable but immotile spermatozoa. Andrologia. 2004;36:366–9.PubMedCrossRefGoogle Scholar
  47. 47.
    de Mendoza MV, Gonzales-Utor AL, Cruz N, et al. In situ use of pentoxifylline to assess sperm vitality in intracytoplasmic sperm injection for treatment of patients with total lack of sperm movement. Fertil Steril. 2000;74:176–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Ebner T, Tews G, Mayer RB, et al. Pharmacological stimulation of sperm motility in frozen and thawed testicular sperm using the dimethylxanthine theophylline. Fertil Steril. 2011;96:1331–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Ebner T, Shebl O, Mayer RB, et al. Healthy live birth using theophylline in a case of retrograde ejaculation and absolute asthenozoospermia. Fertil Steril. 2014;101:340–3.PubMedCrossRefGoogle Scholar
  50. 50.
    Tesarik J, Thebault A, Testart J. Effect of pentoxifylline on sperm movement characteristics in normozoospermic and asthenozoospermic specimens. Hum Reprod. 1992;7:1257–63.PubMedCrossRefGoogle Scholar
  51. 51.
    Vanderzwalmen P, Bertin G, Lejeune B, Nijs M, Vandamme B, Schoysman R. Two essential steps for a successful intracytoplasmic injection: Injection of immobilized spermatozoa after rupture of the oolemma. Hum Reprod. 1996;11:540–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Nagy ZP, Liu J, Joris H, et al. The influence of the site of sperm deposition and mode of oolemma breakage at intracytoplasmic sperm injection on fertilization and embryo development rates. Hum Reprod. 1995;10:3171–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Hardarson T, Lundin K, Hamberger L. The position of the metaphase II spindle cannot be predicted by the location of the first polar body in the human oocyte. Hum Reprod. 2000;15:1372–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Blake M, Garrisi J, Tomkin G, et al. Sperm deposition site during ICSI affects fertilization and development. Fertil Steril. 2000;73:131–7.CrossRefGoogle Scholar
  55. 55.
    Payne D, Flaherty SP, Barry MF, et al. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum Reprod. 1997;12:532–41.PubMedCrossRefGoogle Scholar
  56. 56.
    Van Blerkom J, Davis P, Merriam J, et al. Nuclear und cytoplasmic dynamics of sperm penetration, pronuclear formation und microtubule organisation during fertilization und early preimplantation development in the human. Hum Reprod Update. 1995;1:429–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Ebner T, Yaman C, Moser M, et al. A prospective study on oocyte survival rate after ICSI: influence of injection technique and morphological features. J Assist Reprod Genetics. 2001;18:623–8.CrossRefGoogle Scholar
  58. 58.
    Krause I, Pohler U, Grosse S, et al. Characterization of the injection funnel during intracytoplasmic sperm injection reflects cytoplasmic maturity of the oocyte. fertil Steril. 2016;106:1101–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Ebner T, Moser M, Yaman C, et al. Prospective hatching of embryos developed from oocytes exhibiting difficult oolemma breakage during ICSI. Hum Reprod. 2002;17:1317–20.PubMedCrossRefGoogle Scholar
  60. 60.
    Rienzi L, Greco E, Ubaldi F, Iacobelli M, Martinez F, Tesarik J. Laser-assisted intracytoplasmic sperm injection. Fertil Steril. 2001;76:1045–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Nagy ZP, Oliveira SA, Abdelmassih V, Abdelmassih R. Novel use of laser to assist ICSI for patients with fragile oocytes: a case report. Reprod Biomed Online. 2002;4:27–31.PubMedCrossRefGoogle Scholar
  62. 62.
    Abdelmassih S, Cardoso J, Abdelmassih V, Dias JA, Abdelmassih R, Nagy ZP. Laser-assisted ICSI: a novel approach to obtain higher oocyte survival and embryo quality rates. Hum Reprod. 2002;17:2694–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Ebner T, Moser M, Yaman C, Sommergruber M, Hartl J, Jesacher K, Tews G. Prospective hatching of embryos developed from oocytes exhibiting difficult oolemma penetration during ICSI. Hum Repros. 2002;17:1317–20.CrossRefGoogle Scholar
  64. 64.
    Schieve LA, Meikle SF, Peterson HB, Jeng G, Burnett NM, Wilcox LS. Does assisted hatching pose a risk for monozygotic twinning in pregnancies conceived through in vitro fertilization? Fertil Steril. 2000;74:288–94.PubMedCrossRefGoogle Scholar
  65. 65.
    Moser M, Ebner T, Sommergruber M, Gaisswinkler U, Jesacher K, Puchner M, Wiesinger R, Tews G. Laser-assisted zona pellucida thinning prior to routine ICSI. Hum Reprod. 2004;19:573–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Blake DA, Forsberg AS, Johannson BR, Wikland M. Laser zona pellucida thinning – an alternative approach to assisted hatching. Hum Reprod. 2001;16:1959–64.PubMedCrossRefGoogle Scholar
  67. 67.
    Moomjy M, Scott Sills E, Rosenwaks Z, Palermo GD. Implications of complete fertilization failure after intracytoplasmic sperm injection for subsequent fertilization and reproductive outcome. Hum Reprod. 1998;13:2212–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Tesarik J, Rienzi L, Ubaldi F, Mendoza C, Greco E. Use of a modified intracytoplasmic sperm injection technique to overcome sperm-borne and oocyte-borne oocyte activation failures. Fertil Steril. 2002;78:619–24.PubMedCrossRefGoogle Scholar
  69. 69.
    Ebner T, Moser M, Sommergruber M, Jesacher K, Tews G. Complete oocyte activation failure after ICSI can be overcome by a modified injection technique. Hum reprod. 2004;19:1837–41.PubMedCrossRefGoogle Scholar
  70. 70.
    Van Blerkom J, Davis P, Mathwig V, Alexander S. Domains of high polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum Reprod. 2002;17:393–406.PubMedCrossRefGoogle Scholar
  71. 71.
    Wilding M, Dale B, Marino M, di Matteo L, Alviggi C, Pisaturo ML, Lombardi L, De Placido G. Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod. 2001;16:909–17.PubMedCrossRefGoogle Scholar
  72. 72.
    Barritt J, Kokot M, Cohen J, Steuerwald N, Brenner CA. Quantification of human ooplasmic mitochondria. Reprod Biomed Online. 2002;4:243–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Baltaci V, Ayvaz OU, Unsal E, Aktaş Y, Baltacı A, Turhan F, Ozcan S, Sönmezer M. The effectiveness of intracytoplasmic sperm injection combined with piezoelectric stimulation in infertile couples with total fertilization failure. Fertil Steril. 2010;94:900–4.. in press.PubMedCrossRefGoogle Scholar
  74. 74.
    Rybouchkin AV, Van der Straeten F, Quatacker J, et al. Fertilization and pregnancy after assisted oocyte activation and intracytoplasmic sperm injection in a case of round-headed sperm associated with deficient oocyte activation capacity. Fertil Steril. 1997;68:1144–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Ebner T, Montag M, Oocyte Activation Study Group. Live birth after artificial oocyte activation using a ready-to-use ionophore: a prospective multicentre study. Reprod Biomed Online. 2015;30:359–65.PubMedCrossRefGoogle Scholar
  76. 76.
    Ebner T, Köster M, Shebl O, et al. Application of a ready-to-use calcium ionophore increases rates of fertilization and pregnancy in severe male factor infertility. Fertil Steril. 2012;98:1432–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Ebner T, Oppelt P, Wöber M, et al. Treatment with Ca2+ ionophore improves embryo development and outcome in cases with previous developmental problems: a prospective multicenter study. Hum Reprod. 2015;30:97–102.PubMedCrossRefGoogle Scholar
  78. 78.
    Dumoulin JCM, Coonen E, Bras M, et al. Embryo development and chromosomal anomalies after ICSI: effect of the injection procedure. Hum Reprod. 2001;16:306–12.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Kepler University, Department of Gynecology, Obstetrics, and Gynecological EndocrinologyLinzAustria

Personalised recommendations