Advertisement

Oocyte Activation Deficiency and Advances to Overcome

  • Marc YesteEmail author
  • Celine Jones
  • Siti Nornadhirah Amdani
  • Kevin Coward
Chapter

Abstract

This chapter defines oocyte activation and the main molecular events related to this crucial phenomenon which takes place upon sperm-oocyte fusion. Oocytes are arrested at metaphase-II until fertilization and are alleviated from arrest by their interaction with a sperm-borne oocyte activation factor (SOAF). This factor triggers a series of calcium (Ca2+) oscillations which release the oocyte from metaphase-II and initiates the first sequence of embryogenesis. While different theories and protein candidates have been proposed to explain the mechanism by which the SOAF acts, mounting evidence indicates that a sperm-soluble factor, phospholipase C zeta (PLCζ), is the protein which evokes Ca2+ oscillations in the ooplasm. Here, we review the cascade of downstream events triggered by PLCζ and refer to the vital role of Ca2+ homeostasis during oocyte activation. Failure of the oocyte to activate is known to underlie certain types of human infertility, but the diagnosis of this condition is complex, and treatment options are limited at present to the use of artificial oocyte activators, which operate via electrical, mechanical and chemical means. As chemical oocyte activators are the most commonly used at present, we briefly review the available clinical data for these agents, both in terms of their efficiency and safety, and discuss how alternative, more endogenous, methods could alleviate growing global concerns surrounding the use of artificial oocyte activating agents.

Keywords

Fertilization Oocyte Activation Sperm-borne Oocyte Activation Factor (SOAF) PLCζ Ca2+ homeostasis Oocyte Activation Deficiency Artificial Oocyte Activation 

Notes

Conflict of interest

The authors declare that there is no conflict of interest with regard to the content of this chapter.

Funding

M.Y. was funded by the European Commission, FP7-People Scheme, Marie Curie-IEF (Grant Number: 626061), and the Spanish Ministry of Economy and Competitiveness (Grant Number: RYC-2015-15581). S.N.A. is funded by the Ministry of Education (Brunei Darussalam) and the Chancellor’s Scholarship, Universiti Brunei Darussalam.

References

  1. 1.
    Tripathi A, Kumar KV, Chaube SK. Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol. 2010;223:592–600.PubMedGoogle Scholar
  2. 2.
    Dale B, Wilding M, Coppola G, Tosti E. How do spermatozoa activate oocytes? Reprod Biomed Online. 2010;21:1–3.PubMedCrossRefGoogle Scholar
  3. 3.
    Swann K, Lai FA. Egg activation at fertilization by a soluble sperm protein. Physiol Rev. 2016;96:127–49.PubMedCrossRefGoogle Scholar
  4. 4.
    Horner VL, Wolfner MF. Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev Dyn. 2008;237:527–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Machaty Z. Signal transduction in mammalian oocytes during fertilization. Cell Tissue Res. 2016;363:169–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Ducibella T, Huneau D, Angelichio E, Xu Z, Schultz RM, Kopf GS, Fissore R, Madoux S, Ozil JP. Egg-to-embryo transition is driven by differential responses to Ca(2+) oscillation number. Dev Biol. 2002;250:280–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Whitaker M. Calcium at fertilization and in early development. Physiol Rev. 2006;86:25–88.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Amdani SN, Yeste M, Jones C, Coward K. Sperm factors and oocyte activation: current controversies and considerations. Biol Reprod. 2015;93:50.  https://doi.org/10.1095/biolreprod.115.130609.CrossRefPubMedGoogle Scholar
  9. 9.
    Kline D, Simoncini L, Mandel G, Maue RA, Kado RT, Jaffe LA. Fertilization events induced by neurotransmitters after injection of mRNA in xenopus eggs. Science. 1988;241:464–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Dale B, DeFelice LJ, Ehrenstein G. Injection of a soluble sperm extract into sea urchin eggs triggers the cortical reaction. Experientia. 1985;41:1068–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Jaffe F. Sources of calcium in egg activation: a review and hypothesis. Dev Biol. 1983;99:265–76.PubMedCrossRefGoogle Scholar
  12. 12.
    Neri QV, Lee B, Rosenwaks Z, Machaca K, Palermo GD. Understanding fertilization through intracytoplasmic sperm injection (ICSI). Cell Calcium. 2014;55:24–37.PubMedCrossRefGoogle Scholar
  13. 13.
    Williams CJ, Mehlmann LM, Jaffe LA, Kopf GS, Schultz RM. Evidence that Gq family G proteins do not function in mouse egg activation at fertilization. Dev Biol. 1998;198:116–27.PubMedGoogle Scholar
  14. 14.
    Parrington J, Swann K, Shevchenko VI, Sesay AK, Lai FA. Calcium oscillations in mammalian eggs triggered by a soluble sperm protein. Nature. 1996;379:364–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Swann K. A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development. 1990;110:1295–302.PubMedGoogle Scholar
  16. 16.
    Jones KT, Soeller C, Cannell MB. The passage of Ca2+ and fluorescent markers between the sperm and egg after fusion in the mouse. Development. 1998;125:4627–35.PubMedGoogle Scholar
  17. 17.
    Amireault P, Dubé F. Cloning, sequencing, and expression analysis of mouse glucosamine-6-phosphate deaminase (GNPDA/oscillin). Mol Reprod Dev. 2000;56:424–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Wolny YM, Fissore RA, Wu H, Reis MM, Colombero LT, Ergün B, Rosenwaks Z, Palermo GD. Human glucosamine-6-phosphate isomerase, a homologue of hamster oscillin, does not appear to be involved in Ca2+ release in mammalian oocytes. Mol Reprod Dev. 1999;52:277–87.PubMedCrossRefGoogle Scholar
  19. 19.
    Wu H, He CL, Jehn B, Black SJ, Fissore RA. Partial characterization of the calcium-releasing activity of porcine sperm cytosolic extracts. Dev Biol. 1998;203:369–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Rossi P, Dolci S, Sette C, Geremia R. Molecular mechanisms utilized by alternative c-kit gene products in the control of spermatogonial proliferation and sperm-mediated egg activation. Andrologia. 2003;35:71–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Sette C, Bevilacqua A, Bianchini A, Mangia F, Geremia R, Rossi P. Parthenogenetic activation of mouse eggs by microinjection of a truncated c-kit tyrosine kinase present in spermatozoa. Development. 1997;124:2267–74.PubMedGoogle Scholar
  22. 22.
    Sette C, Paronetto MP, Barchi M, Bevilacqua A, Geremia R, Rossi P. Tr-kit-induced resumption of the cell cycle in mouse eggs requires activation of a Src-like kinase. EMBO J. 2002;21:5386–95.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sette C, Bevilacqua A, Geremia R, Rossi P. Involvement of phospholipase C γ1 in mouse egg activation induced by a truncated form of the c-kit tyrosine kinase present in spermatozoa. J Cell Biol. 1998;142:1063–74.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Muciaccia B, Sette C, Paronetto MP, Barchi M, Pensini S, D’Agostino A, Gandini L, Geremia R, Stefanini M, Rossi P. Expression of a truncated form of KIT tyrosine kinase in human spermatozoa correlates with sperm DNA integrity. Hum Reprod. 2010;25:2188–202.PubMedCrossRefGoogle Scholar
  25. 25.
    Tavalaee M, Nasr-Esfahani MH. Expression profile of PLCζ, PAWP, and TR-KIT in association with fertilization potential, embryo development, and pregnancy outcomes in globozoospermic candidates for intra-cytoplasmic sperm injection and artificial oocyte activation. Andrology. 2016;4:850–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Harada Y, Matsumoto T, Hirahara S, Nakashima A, Ueno S, Oda S, Miyazaki S, Iwao Y. Characterization of a sperm factor for egg activation at fertilization of the newt Cynops pyrrhogaster. Dev Biol. 2007;306:797–808.PubMedCrossRefGoogle Scholar
  27. 27.
    Wu AT, Sutovsky P, Manandhar G, Xu W, Katayama M, Day BN, Park KW, Yi YJ, Xi YW, Prather RS, Oko R. PAWP, a sperm-specific WW domain-binding protein, promotes meiotic resumption and pronuclear development during fertilization. J Biol Chem. 2007;282:12164–75.PubMedCrossRefGoogle Scholar
  28. 28.
    Wu AT, Sutovsky P, Xu W, van der Spoel AC, Platt FM, Oko R. The postacrosomal assembly of sperm head protein, PAWP, is independent of acrosome formation and dependent on microtubular manchette transport. Dev Biol. 2007;312:471–83.PubMedCrossRefGoogle Scholar
  29. 29.
    Ito C, Akutsu H, Yao R, Kyono K, Suzuki-Toyota F, Toyama Y, Maekawa M, Noda T, Toshimori K. Oocyte activation ability correlates with head flatness and presence of perinuclear theca substance in human and mouse sperm. Hum Reprod. 2009;24:2588–95.PubMedCrossRefGoogle Scholar
  30. 30.
    Ito C, Yamatoya K, Yoshida K, Kyono K, Yao R, Noda T, Toshimori K. Appearance of an oocyte activation-related substance during spermatogenesis in mice and humans. Hum Reprod. 2010;25:2734–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Sutovsky P, Manandhar G, Wu A, Oko R. Interactions of sperm perinuclear theca with the oocyte: implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microsc Res Tech. 2003;61:362–78.PubMedCrossRefGoogle Scholar
  32. 32.
    Aarabi M, Balakier H, Bashar S, Moskovtsev SI, Sutovsky P, Librach CL, Oko R. Sperm-derived WW domain-binding protein, PAWP, elicits calcium oscillations and oocyte activation in humans and mice. FASEB J. 2014;28:4434–40.PubMedCrossRefGoogle Scholar
  33. 33.
    Aarabi M, Qin Z, Xu W, Mewburn J, Oko R. Sperm-borne protein, PAWP, initiates zygotic development in Xenopus laevis by eliciting intracellular calcium release. Mol Reprod Dev. 2010;77:249–56.PubMedGoogle Scholar
  34. 34.
    Aarabi M, Balakier H, Bashar S, Moskovtsev SI, Sutovsky P, Librach CL, Oko R. Sperm content of postacrosomal WW binding protein is related to fertilization outcomes in patients undergoing assisted reproductive technology. Fertil Steril. 2014;102:440–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Kennedy CE, Krieger KB, Sutovsky M, Xu W, Vargovič P, Didion BA, Ellersieck MR, Hennessy ME, Verstegen J, Oko R, Sutovsky P. Protein expression pattern of PAWP in bull spermatozoa is associated with sperm quality and fertility following artificial insemination. Mol Reprod Dev. 2014;81:436–49.PubMedCrossRefGoogle Scholar
  36. 36.
    Sutovsky P, Aarabi M, Miranda-Vizuete A, Oko R. Negative biomarker based male fertility evaluation: sperm phenotypes associated with molecular-level anomalies. Asian J Androl. 2015;17:554–60.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Nomikos M, Sanders JR, Theodoridou M, Kashir J, Matthews E, Nounesis G, Lai FA, Swann K. Sperm-specific post-acrosomal WW-domain binding protein (PAWP) does not cause Ca2+ release in mouse oocytes. Mol Hum Reprod. 2014;20:938–47.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Nomikos M, Sanders JR, Kashir J, Sanusi R, Buntwal L, Love D, Ashley P, Sanders D, Knaggs P, Bunkheila A, Swann K, Lai FA. Functional disparity between human PAWP and PLCζ in the generation of Ca2+ oscillations for oocyte activation. Mol Hum Reprod. 2015;21:702–10.PubMedCrossRefGoogle Scholar
  39. 39.
    Satouh Y, Nozawa K, Ikawa M. Sperm postacrosomal WW domain-binding protein is not required for mouse egg activation. Biol Reprod. 2015;93:94.PubMedCrossRefGoogle Scholar
  40. 40.
    Cox LJ, Larman MG, Saunders CM, Hashimoto K, Swann K, Lai FA. Sperm phospholipase Czeta from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction. 2002;124:611–23.PubMedCrossRefGoogle Scholar
  41. 41.
    Escoffier J, Yassine S, Lee HC, Martinez G, Delaroche J, Coutton C, Karaouzène T, Zouari R, Metzler-Guillemain C, Pernet-Gallay K, Hennebicq S, Ray PF, Fissore R, Arnoult C. Subcellular localization of phospholipase Cζ in human sperm and its absence in DPY19L2-deficient sperm are consistent with its role in oocyte activation. Mol Hum Reprod. 2015;21:157–68.PubMedCrossRefGoogle Scholar
  42. 42.
    Kouchi Z, Fukami K, Shikano T, Oda S, Nakamura Y, Takenawa T, Miyazaki S. Recombinant phospholipase Czeta has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs. J Biol Chem. 2004;279:10408–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, Swann K, Lai FA. PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development. 2002;129:3533–44.PubMedGoogle Scholar
  44. 44.
    Yu Y, Halet G, Lai FA, Swann K. Regulation of diacylglycerol production and protein kinase C stimulation during sperm- and PLCzeta-mediated mouse egg activation. Biol Cell. 2008;100:633–43.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Nomikos M, Yu Y, Elgmati K, Theodoridou M, Campbell K, Vassilakopoulou V, Zikos C, Livaniou E, Amso N, Nounesis G, Swann K, Lai FA. Phospholipase Cζ rescues failed oocyte activation in a prototype of male factor infertility. Fertil Steril. 2013;99:76–85.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sanusi R, Yu Y, Nomikos M, Lai FA, Swann K. Rescue of failed oocyte activation after ICSI in a mouse model of male factor infertility by recombinant phospholipase Cζ. Mol Hum Reprod. 2015;21:783–91.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Swann K, Windsor S, Campbell K, Elgmati K, Nomikos M, Zernicka-Goetz M, Amso N, Lai FA, Thomas A, Graham C. Phospholipase C-ζ-induced Ca2+ oscillations cause coincident cytoplasmic movements in human oocytes that failed to fertilize after intracytoplasmic sperm injection. Fertil Steril. 2012;97:742–7.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Yoon SY, Jellerette T, Salicioni AM, Lee HC, Yoo MS, Coward K, Parrington J, Grow D, Cibelli JB, Visconti PE, Mager J, Fissore RA. Human sperm devoid of PLC, zeta 1 fail to induce Ca(2+) release and are unable to initiate the first step of embryo development. J Clin Invest. 2008;118:3671–81.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Yang YR, Follo MY, Cocco L, Suh PG. The physiological roles of primary phospholipase C. Adv Biol Regul. 2013;53:232–41.PubMedCrossRefGoogle Scholar
  50. 50.
    Antal CE, Newton AC. Tuning the signalling output of protein kinase C. Biochem Soc Trans. 2014;42:1477–83.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Taylor CW, Tovey SC, Rossi AM, Lopez Sanjurjo CI, Prole DL, Rahman T. Structural organization of signalling to and from IP3 receptors. Biochem Soc Trans. 2014;42:63–70.PubMedCrossRefGoogle Scholar
  52. 52.
    Theodoridou M, Nomikos M, Parthimos D, Gonzalez-Garcia JR, Elgmati K, Calver BL, Sideratou Z, Nounesis G, Swann K, Lai FA. Chimeras of sperm PLCζ reveal disparate protein domain functions in the generation of intracellular Ca2+ oscillations in mammalian eggs at fertilization. Mol Hum Reprod. 2013;19:852–64.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yu Y, Nomikos M, Theodoridou M, Nounesis G, Lai FA, Swann K. PLCζ causes Ca(2+) oscillations in mouse eggs by targeting intracellular and not plasma membrane PI(4,5)P(2). Mol Biol Cell. 2012;23:371–80.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ramadan WM, Kashir J, Jones C, Coward K. Oocyte activation and phospholipase C zeta (PLCζ): diagnostic and therapeutic implications for assisted reproductive technology. Cell Commun Signal. 2012;10:12.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bunney TD, Katan M. PLC regulation: emerging pictures for molecular mechanisms. Trends Biochem Sci. 2011;36:88–96.PubMedCrossRefGoogle Scholar
  56. 56.
    Suh PG, Park JI, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yun S, Ryu SH. Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep. 2008;41:415–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Kouchi Z, Shikano T, Nakamura Y, Shirakawa H, Fukami K, Miyazaki S. The role of EF-hand domains and C2 domain in regulation of enzymatic activity of phospholipase Czeta. J Biol Chem. 2005;280:21015–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Yoda A, Oda S, Shikano T, Kouchi Z, Awaji T, Shirakawa H, Kinoshita K, Miyazaki S. Ca2+ oscillation-inducing phospholipase C zeta expressed in mouse eggs is accumulated to the pronucleus during egg activation. Dev Biol. 2004;268:245–57.PubMedCrossRefGoogle Scholar
  59. 59.
    Nomikos M, Mulgrew-Nesbitt A, Pallavi P, Mihalyne G, Zaitseva I, Swann K, Lai FA, Murray D, McLaughlin S. Binding of phosphoinositide-specific phospholipase C-zeta (PLC-zeta) to phospholipid membranes: potential role of an unstructured cluster of basic residues. J Biol Chem. 2007;282:16644–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Nomikos M, Elgmati K, Theodoridou M, Georgilis A, Gonzalez-Garcia JR, Nounesis G, Swann K, Lai FA. Novel regulation of PLCζ activity via its XY-linker. Biochem J. 2011;438:427–32.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bedford-Guaus SJ, Yoon SY, Fissore RA, Choi YH, Hinrichs K. Microinjection of mouse phospholipase C zeta complementary RNA into mare oocytes induces long-lasting intracellular calcium oscillations and embryonic development. Reprod Fertil Dev. 2008;20:875–83.PubMedCrossRefGoogle Scholar
  62. 62.
    Cooney MA, Malcuit C, Cheon B, Holland MK, Fissore RA, D’Cruz NT. Species-specific differences in the activity and nuclear localization of murine and bovine phospholipase C zeta 1. Biol Reprod. 2010;83:92–101.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Yoneda A, Kashima M, Yoshida S, Terada K, Nakagawa S, Sakamoto A, Hayakawa K, Suzuki K, Ueda J, Watanabe T. Molecular cloning, testicular postnatal expression, and oocyte-activating potential of porcine phospholipase Czeta. Reproduction. 2006;132:393–401.PubMedCrossRefGoogle Scholar
  64. 64.
    Young C, Grasa P, Coward K, Davis LC, Parrington J. Phospholipase C zeta undergoes dynamic changes in its pattern of localization in sperm during capacitation and the acrosome reaction. Fertil Steril. 2009;91:2230–42.PubMedCrossRefGoogle Scholar
  65. 65.
    Coward K, Ponting CP, Chang HY, Hibbitt O, Savolainen P, Jones KT, Parrington J. Phospholipase Czeta, the trigger of egg activation in mammals, is present in a non-mammalian species. Reproduction. 2005;130:157–63.PubMedCrossRefGoogle Scholar
  66. 66.
    Ito M, Shikano T, Oda S, Horiguchi T, Tanimoto S, Awaji T, Mitani H, Miyazaki S. Difference in Ca2+ oscillation-inducing activity and nuclear translocation ability of PLCZ1, an egg-activating sperm factor candidate, between mouse, rat, human, and medaka fish. Biol Reprod. 2008;78:1081–90.PubMedCrossRefGoogle Scholar
  67. 67.
    Fujimoto S, Yoshida N, Fukui T, Amanai M, Isobe T, Itagaki C, Izumi T, Perry AC. Mammalian phospholipase Czeta induces oocyte activation from the sperm perinuclear matrix. Dev Biol. 2004;274:370–83.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Yelumalai S, Yeste M, Jones C, Amdani SN, Kashir J, Mounce G, Fatum M, Barratt C, McVeigh E, Coward K. Total levels and proportions of sperm exhibiting phospholipase C Zeta (PLCζ) are significantly correlated with fertilization rates following intracytoplasmic sperm injection. Fertil Steril. 2015;104:561–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Yeste M, Jones C, Amdani SN, Yelumalai S, Mounce G, da Silva SJ, Child T, Coward K. Does advancing male age influence the expression levels and localisation patterns of phospholipase C zeta (PLCζ) in human sperm? Sci Rep. 2016;6:27543.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Grasa P, Coward K, Young C, Parrington J. The pattern of localization of the putative oocyte activation factor, phospholipase Czeta, in uncapacitated, capacitated, and ionophore-treated human spermatozoa. Hum Reprod. 2008;23:2513–22.PubMedCrossRefGoogle Scholar
  71. 71.
    Kashir J, Jones C, Mounce G, Ramadan WM, Lemmon B, Heindryckx B, de Sutter P, Parrington J, Turner K, Child T, McVeigh E, Coward K. Variance in total levels of phospholipase C zeta (PLC-ζ) in human sperm may limit the applicability of quantitative immunofluorescent analysis as a diagnostic indicator of oocyte activation capability. Fertil Steril. 2013;99:107–17.PubMedCrossRefGoogle Scholar
  72. 72.
    Aghajanpour S, Ghaedi K, Salamian A, Deemeh MR, Tavalaee M, Moshtaghian J, Parrington J, Nasr-Esfahani MH. Quantitative expression of phospholipase C zeta, as an index to assess fertilization potential of a semen sample. Hum Reprod. 2011;26:2950–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Escoffier J, Lee HC, Yassine S, Zouari R, Martinez G, Karaouzène T, Coutton C, Kherraf ZE, Halouani L, Triki C, Nef S, Thierry-Mieg N, Savinov SN, Fissore R, Ray PF, Arnoult C. Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP. Hum Mol Genet. 2016;25:878–91.PubMedCrossRefGoogle Scholar
  74. 74.
    Heytens E, Parrington J, Coward K, Young C, Lambrecht S, Yoon SY, Fissore RA, Hamer R, Deane CM, Ruas M, Grasa P, Soleimani R, Cuvelier CA, Gerris J, Dhont M, Deforce D, Leybaert L, De Sutter P. Reduced amounts and abnormal forms of phospholipase C zeta (PLCzeta) in spermatozoa from infertile men. Hum Reprod. 2009;24:2417–28.PubMedCrossRefGoogle Scholar
  75. 75.
    Kashir J, Jones C, Lee HC, Rietdorf K, Nikiforaki D, Durrans C, Ruas M, Tee ST, Heindryckx B, Galione A, De Sutter P, Fissore RA, Parrington J, Coward K. Loss of activity mutations in phospholipase C zeta (PLCζ) abolishes calcium oscillatory ability of human recombinant protein in mouse oocytes. Hum Reprod. 2011;26:3372–87.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kashir J, Konstantinidis M, Jones C, Heindryckx B, De Sutter P, Parrington J, Wells D, Coward K. Characterization of two heterozygous mutations of the oocyte activation factor phospholipase C zeta (PLCζ) from an infertile man by use of minisequencing of individual sperm and expression in somatic cells. Fertil Steril. 2012;98:423–31.PubMedCrossRefGoogle Scholar
  77. 77.
    Kashir J, Konstantinidis M, Jones C, Lemmon B, Lee HC, Hamer R, Heindryckx B, Deane CM, De Sutter P, Fissore RA, Parrington J, Wells D, Coward K. A maternally inherited autosomal point mutation in human phospholipase C zeta (PLCζ) leads to male infertility. Hum Reprod. 2012;27:222–31.PubMedCrossRefGoogle Scholar
  78. 78.
    Lee HC, Arny M, Grow D, Dumesic D, Fissore RA, Jellerette-Nolan T. Protein phospholipase C Zeta1 expression in patients with failed ICSI but with normal sperm parameters. J Assist Reprod Genet. 2014;31:749–56.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nomikos M, Elgmati K, Theodoridou M, Calver BL, Cumbes B, Nounesis G, Swann K, Lai FA. Male infertility-linked point mutation disrupts the Ca2+ oscillation-inducing and PIP2 hydrolysis activity of sperm PLCζ. Biochem J. 2011;434:211–7.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kashir J, Sermondade N, Sifer C, Oo SL, Jones C, Mounce G, Turner K, Child T, McVeigh E, Coward K. Motile sperm organelle morphology evaluation-selected globozoospermic human sperm with an acrosomal bud exhibits novel patterns and higher levels of phospholipase C zeta. Hum Reprod. 2012c;27:3150–60.PubMedCrossRefGoogle Scholar
  81. 81.
    Taylor SL, Yoon SY, Morshedi MS, Lacey DR, Jellerette T, Fissore RA, Oehninger S. Complete globozoospermia associated with PLCζ deficiency treated with calcium ionophore and ICSI results in pregnancy. Reprod Biomed Online. 2010;20:559–64.PubMedCrossRefGoogle Scholar
  82. 82.
    Yassine S, Escoffier J, Martinez G, Coutton C, Karaouzène T, Zouari R, Ravanat JL, Metzler-Guillemain C, Lee HC, Fissore R, Hennebicq S, Ray PF, Arnoult C. Dpy19l2-deficient globozoospermic sperm display altered genome packaging and DNA damage that compromises the initiation of embryo development. Mol Hum Reprod. 2015;21:169–85.PubMedCrossRefGoogle Scholar
  83. 83.
    Zhang ZQ, Long SG, Huang ZH, Xin CL, Wu QF. Different outcomes after intracytoplasmic sperm injection without oocyte activation in two patients with different types of globozoospermia. Andrologia. 2016;48:116–20.PubMedCrossRefGoogle Scholar
  84. 84.
    Aarabi M, Yu Y, Xu W, Tse MY, Pang SC, Yi YJ, Sutovsky P, Oko R. The testicular and epididymal expression profile of PLCζ in mouse and human does not support its role as a sperm-borne oocyte activating factor. PLoS One. 2012;7:e33496.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Castillo J, Amaral A, Azpiazu R, Vavouri T, Estanyol JM, Ballescà JL, Oliva R. Genomic and proteomic dissection and characterization of the human sperm chromatin. Mol Hum Reprod. 2014;20:1041–53.PubMedCrossRefGoogle Scholar
  86. 86.
    Hachem A, Godwin J, Ruas M, Lee HC, Ferrer Buitrago M, Ardestani G, Bassett A, Fox S, Navarrete F, de Sutter P, Heindryckx B, Fissore R, Parrington J. PLCζ is the physiological trigger of the Ca2+ oscillations that induce embryogenesis in mammals but conception can occur in its absence. Development. 2017;144:2914–24.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update. 2006;12:23–37.PubMedCrossRefGoogle Scholar
  88. 88.
    Barratt CL, Kirkman-Brown J. Man-made versus female-made environment--will the real capacitation please stand up? Hum Reprod Update. 2006;12:1–2.PubMedCrossRefGoogle Scholar
  89. 89.
    Yeste M. Boar spermatozoa within the oviductal environment (I): sperm reservoir. In: Bonet S, Casas I, Holt WV, Yeste M, editors. Boar reproduction: fundamentals and new biotechnological trends. Berlin: Springer; 2013. p. 257–346.CrossRefGoogle Scholar
  90. 90.
    Visconti PE. Understanding the molecular basis of sperm capacitation through kinase design. Proc Natl Acad Sci U S A. 2009;106:667–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Yeste M. Boar spermatozoa within the oviductal environment (II): sperm capacitation. In: Bonet S, Casas I, Holt WV, Yeste M, editors. Boar reproduction: fundamentals and new biotechnological trends. Berlin: Springer; 2013. p. 281–342.Google Scholar
  92. 92.
    Yeste M. Boar spermatozoa within the oviductal environment (III): fertilisation. In: Bonet S, Casas I, Holt WV, Yeste M, editors. Boar reproduction: fundamentals and new biotechnological trends. Berlin: Springer; 2013. p. 343–406.Google Scholar
  93. 93.
    Buffone MG, Hirohashi N, Gerton GL. Unresolved questions concerning mammalian sperm acrosomal exocytosis. Biol Reprod. 2014;90:112.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    La Spina FA, Puga Molina LC, Romarowski A, Vitale AM, Falzone TL, Krapf D, Hirohashi N, Buffone MG. Mouse sperm begin to undergo acrosomal exocytosis in the upper isthmus of the oviduct. Dev Biol. 2016;411:172–82.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Yeste M, Jones C, Amdani SN, Coward K. Oocyte activation and fertilisation: crucial contributors from the sperm and oocyte. In: Arur S, editor. Signaling-mediated control of cell division. From oogenesis to oocyte-to-embryo development. Berlin: Springer; 2017. p. 213–39.CrossRefGoogle Scholar
  96. 96.
    Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A. The gamete fusion process is defective in eggs of CD9-deficient mice. Nat Genet. 2000;24:279–82.PubMedCrossRefGoogle Scholar
  97. 97.
    Kaji K, Kudo A. The mechanism of sperm-oocyte fusion in mammals. Reproduction. 2004;127:423–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E. Requirement of CD9 on the egg plasma membrane for fertilization. Science. 2000;287:321–4.PubMedCrossRefGoogle Scholar
  99. 99.
    Bianchi E, Doe B, Goulding D, Wright GJ. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature. 2014;508:483–7.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Inoue N, Ikawa M, Isotani A, Okabe M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 2005;434:234–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Inoue N, Hamada D, Kamikubo H, Hirata K, Kataoka M, Yamamoto M, Ikawa M, Okabe M, Hagihara Y. Molecular dissection of IZUMO1, a sperm protein essential for sperm-egg fusion. Development. 2013;140:3221–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Saunders CM, Swann K, Lai FA. PLCzeta, a sperm-specific PLC and its potential role in fertilization. Biochem Soc Symp. 2007;74:23–36.CrossRefGoogle Scholar
  103. 103.
    Wu H, Smyth J, Luzzi V, Fukami K, Takenawa T, Black SL, Allbritton NL, Fissore RA. Sperm factor induces intracellular free calcium oscillations by stimulating the phosphoinositide pathway. Biol Reprod. 2001;64:1338–49.PubMedCrossRefGoogle Scholar
  104. 104.
    Swann K, Lai FA. PLCζ and the initiation of Ca(2+) oscillations in fertilizing mammalian eggs. Cell Calcium. 2013;53:55–62.PubMedCrossRefGoogle Scholar
  105. 105.
    Yeste M, Jones C, Amdani SN, Patel S, Coward K. Oocyte activation deficiency: a role for an oocyte contribution? Hum Reprod Update. 2016;22:23–47.PubMedCrossRefGoogle Scholar
  106. 106.
    Bhanumathy C, da Fonseca PC, Morris EP, Joseph SK. Identification of functionally critical residues in the channel domain of inositol trisphosphate receptors. J Biol Chem. 2012;287:43674–84.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Kashir J, Heindryckx B, Jones C, De Sutter P, Parrington J, Coward K. Oocyte activation, phospholipase C zeta and human infertility. Hum Reprod Update. 2010;16:690–703.PubMedCrossRefGoogle Scholar
  108. 108.
    Williams CJ. Signalling mechanisms of mammalian oocyte activation. Hum Reprod Update. 2002;8:313–21.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Dupont G. Link between fertilization-induced Ca2+ oscillations and relief from metaphase II arrest in mammalian eggs: a model based on calmodulin-dependent kinase II activation. Biophys Chem. 1998;72:153–67.PubMedCrossRefGoogle Scholar
  110. 110.
    Kasri NN, Török K, Galione A, Garnham C, Callewaert G, Missiaen L, Parys JB, De Smedt H. Endogenously bound calmodulin is essential for the function of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 2006;281:8332–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Von Stetina JR, Orr-Weaver TL. Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb Perspect Biol. 2011;3:a005553.Google Scholar
  112. 112.
    Ducibella T, Schultz RM, Ozil JP. Role of calcium signals in early development. Semin Cell Dev Biol. 2006;17:324–32.PubMedCrossRefGoogle Scholar
  113. 113.
    Jones KT. Intracellular calcium in the fertilization and development of mammalian eggs. Clin Exp Pharmacol Physiol. 2007;34:1084–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Knott JG, Gardner AJ, Madgwick S, Jones KT, Williams CJ, Schultz RM. Calmodulin-dependent protein kinase II triggers mouse egg activation and embryo development in the absence of Ca2+ oscillations. Dev Biol. 2006;296:388–95.PubMedCrossRefGoogle Scholar
  115. 115.
    Madgwick S, Levasseur M, Jones KT. Calmodulin-dependent protein kinase II, and not protein kinase C, is sufficient for triggering cell-cycle resumption in mammalian eggs. J Cell Sci. 2005;118:3849–59.PubMedCrossRefGoogle Scholar
  116. 116.
    Ducibella T, Fissore R. The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev Biol. 2008;315:257–79.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Jellerette T, He CL, Wu H, Parys JB, Fissore RA. Down-regulation of the inositol 1,4,5-trisphosphate receptor in mouse eggs following fertilization or parthenogenetic activation. Dev Biol. 2000;223:238–50.PubMedCrossRefGoogle Scholar
  118. 118.
    Lee B, Yoon SY, Malcuit C, Parys JB, Fissore RA. Inositol 1,4,5-trisphosphate receptor 1 degradation in mouse eggs and impact on [Ca2+]i oscillations. J Cell Physiol. 2010;222:238–47.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Malcuit C, Knott JG, He C, Wainwright T, Parys JB, Robl JM, Fissore RA. Fertilization and inositol 1,4,5-trisphosphate (IP3)-induced calcium release in type-1 inositol 1,4,5-trisphosphate receptor down-regulated bovine eggs. Biol Reprod. 2005;73:2–13.PubMedCrossRefGoogle Scholar
  120. 120.
    Miyazaki S, Shirakawa H, Nakada K, Honda Y. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Dev Biol. 1993;158:62–78.PubMedCrossRefGoogle Scholar
  121. 121.
    Parrington J, Brind S, De Smedt H, Gangeswaran R, Lai FA, Wojcikiewicz R, Carroll J. Expression of inositol 1,4,5-trisphosphate receptors in mouse oocytes and early embryos: the type I isoform is upregulated in oocytes and downregulated after fertilization. Dev Biol. 1998;203:451–61.PubMedCrossRefGoogle Scholar
  122. 122.
    Matifat F, Hague F, Brûlé G, Collin T. Regulation of InsP3-mediated Ca2+ release by CaMKII in Xenopus oocytes. Pflugers Arch. 2001;441:796–801.PubMedCrossRefGoogle Scholar
  123. 123.
    Pesty A, Avazeri N, Lefèvre B. Nuclear calcium release by InsP3-receptor channels plays a role in meiosis reinitiation in the mouse oocyte. Cell Calcium. 1998;24:239–51.PubMedCrossRefGoogle Scholar
  124. 124.
    Vanderheyden V, Wakai T, Bultynck G, De Smedt H, Parys JB, Fissore RA. Regulation of inositol 1,4,5-trisphosphate receptor type 1 function during oocyte maturation by MPM-2 phosphorylation. Cell Calcium. 2009;46:56–64.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ueda Y, Ishitsuka R, Hullin-Matsuda F, Kobayashi T. Regulation of the transbilayer movement of diacylglycerol in the plasma membrane. Biochimie. 2014;107 Pt A:43–50.PubMedCrossRefGoogle Scholar
  126. 126.
    Kanashiro CA, Khalil RA. Signal transduction by protein kinase C in mammalian cells. Clin Exp Pharmacol Physiol. 1998;25:974–85.PubMedCrossRefGoogle Scholar
  127. 127.
    Eliyahu E, Tsaadon A, Shtraizent N, Shalgi R. The involvement of protein kinase C and actin filaments in cortical granule exocytosis in the rat. Reproduction. 2005;129:161–70.PubMedCrossRefGoogle Scholar
  128. 128.
    Eliyahu E, Shtraizent N, Tsaadon A, Shalgi R. Association between myristoylated alanin-rich C kinase substrate (MARCKS) translocation and cortical granule exocytosis in rat eggs. Reproduction. 2006;131:221–31.PubMedCrossRefGoogle Scholar
  129. 129.
    Tsaadon L, Kaplan-Kraicer R, Shalgi R. Myristoylated alanine-rich C kinase substrate, but not Ca2+/calmodulin-dependent protein kinase II, is the mediator in cortical granules exocytosis. Reproduction. 2008;135:613–24.PubMedCrossRefGoogle Scholar
  130. 130.
    Capco DG. Molecular and biochemical regulation of early mammalian development. Int Rev Cytol. 2001;207:195–235.PubMedCrossRefGoogle Scholar
  131. 131.
    Kalive M, Faust JJ, Koeneman BA, Capco DG. Involvement of the PKC family in regulation of early development. Mol Reprod Dev. 2010;77:95–104.PubMedGoogle Scholar
  132. 132.
    Rajagopal S, Fields BL, Burton BK, On C, Reeder AA, Kamatchi GL. Inhibition of protein kinase C (PKC) response of voltage-gated calcium (Cav)2.2 channels expressed in Xenopus oocytes by Cavβ subunits. Neuroscience. 2014;280:1–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Chen Q, Zhang W, Ran H, Feng L, Yan H, Mu X, Han Y, Liu W, Xia G, Wang C. PKCδ and θ possibly mediate FSH-induced mouse oocyte maturation via NOX-ROS-TACE Cascade signaling pathway. PLoS One. 2014;9:e111423.  https://doi.org/10.1371/journal.pone.0111423.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Halet G, Tunwell R, Parkinson SJ, Carroll J. Conventional PKCs regulate the temporal pattern of Ca2+ oscillations at fertilization in mouse eggs. J Cell Biol. 2004;164:1033–44.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Eliyahu E, Shalgi R. A role for protein kinase C during rat egg activation. Biol Reprod. 2002;67:189–95.PubMedCrossRefGoogle Scholar
  136. 136.
    Luria A, Tennenbaum T, Sun QY, Rubinstein S, Breitbart H. Differential localization of conventional protein kinase C isoforms during mouse oocyte development. Biol Reprod. 2000;62:1564–70.PubMedCrossRefGoogle Scholar
  137. 137.
    Amdani SN, Jones C, Coward K. Phospholipase C zeta (PLCζ): oocyte activation and clinical links to male factor infertility. Adv Biol Regul. 2013;53:292–308.PubMedCrossRefGoogle Scholar
  138. 138.
    Ito J, Parrington J, Fissore RA. PLCζ and its role as a trigger of development in vertebrates. Mol Reprod Dev. 2011;78:846–53.PubMedCrossRefGoogle Scholar
  139. 139.
    Wakai T, Zhang N, Vangheluwe P, Fissore RA. Regulation of endoplasmic reticulum Ca(2+) oscillations in mammalian eggs. J Cell Sci. 2013;126:5714–24.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Stathopulos PB, Ikura M. Store operated calcium entry: from concept to structural mechanisms. Cell Calcium. 2017;63:3–7.PubMedCrossRefGoogle Scholar
  141. 141.
    Wang C, Machaty Z. Calcium influx in mammalian eggs. Reproduction. 2013;145:97–105.CrossRefGoogle Scholar
  142. 142.
    Putney JW. Origins of the concept of store-operated calcium entry. Front Biosci. 2011;3:980–4.CrossRefGoogle Scholar
  143. 143.
    Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW. Activation and regulation of store-operated calcium entry. J Cell Mol Med. 2010;14:2337–49.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Martín-Romero FJ, López-Guerrero AM, Alvarez IS, Pozo-Guisado E. Role of store-operated calcium entry during meiotic progression and fertilization of mammalian oocytes. Int Rev Cell Mol Biol. 2012;295:291–328.PubMedCrossRefGoogle Scholar
  145. 145.
    Cheon B, Lee HC, Wakai T, Fissore RA. Ca2+ influx and the store-operated Ca2+ entry pathway undergo regulation during mouse oocyte maturation. Mol Biol Cell. 2013;24:1396–410.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Wang C, Lee K, Gajdócsi E, Papp AB, Machaty Z. Orai1 mediates store-operated Ca2+ entry during fertilization in mammalian oocytes. Dev Biol. 2012;365:414–23.PubMedCrossRefGoogle Scholar
  147. 147.
    Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol. 2012;13:549–65.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell. 2008;135:110–22.PubMedCrossRefGoogle Scholar
  149. 149.
    Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature. 2005;437:902–5.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441:179–85.PubMedCrossRefGoogle Scholar
  151. 151.
    Gudlur A, Quintana A, Zhou Y, Hirve N, Mahapatra S, Hogan PG. STIM1 triggers a gating rearrangement at the extracellular mouth of the ORAI1 channel. Nat Commun. 2014;5:5164.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Putney JW. Capacitative calcium entry: from concept to molecules. Immunol Rev. 2009;231:10–22.PubMedCrossRefGoogle Scholar
  153. 153.
    Barr VA, Bernot KM, Shaffer MH, Burkhardt JK, Samelson LE. Formation of STIM and Orai complexes: puncta and distal caps. Immunol Rev. 2009;231:148–59.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell. 2009;136:876–90.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Strehler EE. Plasma membrane calcium ATPases: from generic Ca2+ sump pumps to versatile systems for fine-tuning cellular Ca2+. Biochem Biophys Res Commun. 2015;460:26–33.PubMedCrossRefGoogle Scholar
  156. 156.
    Elaib Z, Saller F, Bobe R. The calcium entry-calcium refilling coupling. Adv Exp Med Biol. 2016;898:333–52.PubMedCrossRefGoogle Scholar
  157. 157.
    Ullah G, Jung P, Machaca K. Modeling Ca2+ signaling differentiation during oocyte maturation. Cell Calcium. 2007;42:556–64.PubMedCrossRefGoogle Scholar
  158. 158.
    Dumollard R, Marangos P, Fitzharris G, Swann K, Duchen M, Carroll J. Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development. 2004;131:3057–67.PubMedCrossRefGoogle Scholar
  159. 159.
    Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2011;11:797–813.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Tripathi A, Chaube SK. High cytosolic free calcium level signals apoptosis through mitochondria-caspase mediated pathway in rat eggs cultured in vitro. Apoptosis. 2012;17:439–48.PubMedCrossRefGoogle Scholar
  161. 161.
    Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril. 2013;99:63.CrossRefGoogle Scholar
  162. 162.
    Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod. 2007;22:1506–12.PubMedCrossRefGoogle Scholar
  163. 163.
    Chandra A, Copen CE, Stephen EH. Infertility service use in the United States: data from the National Survey of family growth, 1982-2010. Natl Health Stat Rep. 2014;73:1–21.Google Scholar
  164. 164.
    Louis JF, Thoma ME, Sørensen DN, McLain AC, King RB, Sundaram R, Keiding N, Buck Louis GM. The prevalence of couple infertility in the United States from a male perspective: evidence from a nationally representative sample. Andrology. 2013;1:741–8.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Ombelet W, Cooke I, Dyer S, Serour G, Devroey P. Infertility and the provision of infertility medical services in developing countries. Hum Reprod Update. 2008;14:605–21.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Thoma ME, McLain AC, Louis JF, King RB, Trumble AC, Sundaram R, Buck Louis GM. Prevalence of infertility in the United States as estimated by the current duration approach and a traditional constructed approach. Fertil Steril. 2013;99:1324–31.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, Sullivan E, Vanderpoel S. International Committee for Monitoring Assisted Reproductive Technology, World Health Organization (2009) International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology. Fertil Steril. 2009;92:1520–4.PubMedCrossRefGoogle Scholar
  168. 168.
    Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update. 2008;14:431–46.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Yanagida K, Fujikura Y, Katayose H. The present status of artificial oocyte activation in assisted reproductive technology. Reprod Med Biol. 2008;7:133–42.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Vanden Meerschaut F, Leybaert L, Nikiforaki D, Qian C, Heindryckx B, De Sutter P. Diagnostic and prognostic value of calcium oscillatory pattern analysis for patients with ICSI fertilization failure. Hum Reprod. 2013;28:87–98.CrossRefGoogle Scholar
  171. 171.
    Vanden Meerschaut F, Nikiforaki D, Heindryckx B, De Sutter P. Assisted oocyte activation following ICSI fertilization failure. Reprod Biomed Online. 2014;28:560–71.CrossRefGoogle Scholar
  172. 172.
    Ferrer-Vaquer A, Barragan M, Freour T, Vernaeve V, Vassena R. PLCζ sequence, protein levels, and distribution in human sperm do not correlate with semen characteristics and fertilization rates after ICSI. J Assist Reprod Genet. 2016;33:747–56.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Eldar-Geva T, Brooks B, Margalioth EJ, Zylber-Haran E, Gal M, Silber SJ. Successful pregnancy and delivery after calcium ionophore oocyte activation in a normozoospermic patient with previous repeated failed fertilization after intracytoplasmic sperm injection. Fertil Steril. 2003;79(Suppl 3):1656–8.PubMedCrossRefGoogle Scholar
  174. 174.
    Heindryckx B, Van der Elst J, De Sutter P, Dhont M. Treatment option for sperm- or oocyte-related fertilization failure: assisted oocyte activation following diagnostic heterologous ICSI. Hum Reprod. 2005;20:2237–41.PubMedCrossRefGoogle Scholar
  175. 175.
    Heindryckx B, De Gheselle S, Gerris J, Dhont M, De Sutter P. Efficiency of assisted oocyte activation as a solution for failed intracytoplasmic sperm injection. Reprod Biomed Online. 2008;17:662–8.PubMedCrossRefGoogle Scholar
  176. 176.
    Tesarik J, Rienzi L, Ubaldi F, Mendoza C, Greco E. Use of a modified intracytoplasmic sperm injection technique to overcome sperm-borne and oocyte-borne oocyte activation failures. Fertil Steril. 2002;78:619–24.CrossRefGoogle Scholar
  177. 177.
    Grøndahl ML, Borup R, Vikeså J, Ernst E, Andersen CY, Lykke-Hartmann K. The dormant and the fully competent oocyte: comparing the transcriptome of human oocytes from primordial follicles and in metaphase II. Mol Hum Reprod. 2013;19:600–17.PubMedCrossRefGoogle Scholar
  178. 178.
    Kilani S, Chapman MG. Meiotic spindle normality predicts live birth in patients with recurrent in vitro fertilization failure. Fertil Steril. 2014;101:403–6.PubMedCrossRefGoogle Scholar
  179. 179.
    Miyara F, Aubriot FX, Glissant A, Nathan C, Douard S, Stanovici A, Herve F, Dumont-Hassan M, LeMeur A, Cohen-Bacrie P, Debey P. Multiparameter analysis of human oocytes at metaphase II stage after IVF failure in non-male infertility. Hum Reprod. 2003;18:1494–503.PubMedCrossRefGoogle Scholar
  180. 180.
    Verbert L, Lee B, Kocks SL, Assefa Z, Parys JB, Missiaen L, Callewaert G, Fissore RA, De Smedt H, Bultynck G. Caspase-3-truncated type 1 inositol 1,4,5-trisphosphate receptor enhances intracellular Ca2+ leak and disturbs Ca2+ signalling. Biol Cell. 2008;100:39–49.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Xing X, Zhao H, Li M, Sun M, Li Y, Chen ZJ. Morphologically abnormal oocytes not capable of fertilization despite repeated strategies. Fertil Steril. 2011;95(2435):e5–7.Google Scholar
  182. 182.
    Darwish E, Magdi Y. A preliminary report of successful cleavage after calcium ionophore activation at ICSI in cases with previous arrest at the pronuclear stage. Reprod Biomed Online. 2015;31:799–804.PubMedCrossRefGoogle Scholar
  183. 183.
    Ebner T, Montag M. Artificial oocyte activation: evidence for clinical readiness. Reprod Biomed Online. 2016;32:271–3.PubMedCrossRefGoogle Scholar
  184. 184.
    Montag M, Köster M, van der Ven K, Bohlen U, van der Ven H. The benefit of artificial oocyte activation is dependent on the fertilization rate in a previous treatment cycle. Reprod Biomed Online. 2012;24:521–6.PubMedCrossRefGoogle Scholar
  185. 185.
    Nakada K, Mizuno J. Intracellular calcium responses in bovine oocytes induced by spermatozoa and by reagents. Theriogenology. 1998;50:269–82.PubMedCrossRefGoogle Scholar
  186. 186.
    Versieren K, Heindryckx B, Lierman S, Gerris J, De Sutter P. Developmental competence of parthenogenetic mouse and human embryos after chemical or electrical activation. Reprod Biomed Online. 2010;21:769–75.PubMedCrossRefGoogle Scholar
  187. 187.
    Nasr-Esfahani MH, Deemeh MR, Tavalaee M. Artificial oocyte activation and intracytoplasmic sperm injection. Fertil Steril. 2010;94:520–6.PubMedCrossRefGoogle Scholar
  188. 188.
    Ebner T, Moser M, Sommergruber M, Jesacher K, Tews G. Complete oocyte activation failure after ICSI can be overcome by a modified injection technique. Hum Reprod. 2004;19:1837–41.CrossRefGoogle Scholar
  189. 189.
    Mansell S, Rice A, Beaton C, Barratt CLR. Globozoospermia. In: Sharif K, Coomarasamy A, editors. Assisted reproduction techniques. Challenges and management options. Chichester: Wiley-Blackwell; 2012. p. 308–12.CrossRefGoogle Scholar
  190. 190.
    Egashira A, Murakami M, Haigo K, Horiuchi T, Kuramoto T. A successful pregnancy and live birth after intracytoplasmic sperm injection with globozoospermic sperm and electrical oocyte activation. Fertil Steril. 2009;92:2037.e5–9.CrossRefGoogle Scholar
  191. 191.
    Baltaci V, Ayvaz OU, Unsal E, Aktaş Y, Baltaci A, Turhan F, Ozcan S, Sönmezer M. The effectiveness of intracytoplasmic sperm injection combined with piezoelectric stimulation in infertile couples with total fertilization failure. Fertil Steril. 2010;94:900–4.CrossRefGoogle Scholar
  192. 192.
    Lu Q, Zhao Y, Gao X, Li Y, Ma S, Mullen S, Critser JK, Chen ZJ. Combination of calcium ionophore A23187 with puromycin salvages human unfertilized oocytes after ICSI. Eur J Obstet Gynecol Reprod Biol. 2006;126:72–6.PubMedCrossRefGoogle Scholar
  193. 193.
    Murase Y, Araki Y, Mizuno S, Kawaguchi C, Naito M, Yoshizawa M, Araki Y. Pregnancy following chemical activation of oocytes in a couple with repeated failure of fertilization using ICSI: case report. Hum Reprod. 2004;19:1604–7.PubMedCrossRefGoogle Scholar
  194. 194.
    Nakagawa K, Yamano S, Moride N, Yamashita M, Yoshizawa M, Aono T. Effect of activation with Ca ionophore A23187 and puromycin on the development of human oocytes that failed to fertilize after intracytoplasmic sperm injection. Fertil Steril. 2001;76:148–52.PubMedCrossRefGoogle Scholar
  195. 195.
    Nasr-Esfahani MH, Razavi S, Javdan Z, Tavalaee M. Artificial oocyte activation in severe teratozoospermia undergoing intracytoplasmic sperm injection. Fertil Steril. 2008;90:2231–7.PubMedCrossRefGoogle Scholar
  196. 196.
    Terada Y, Hasegawa H, Takahashi A, Ugajin T, Yaegashi N, Okamura K. Successful pregnancy after oocyte activation by a calcium ionophore for a patient with recurrent intracytoplasmic sperm injection failure, with an assessment of oocyte activation and sperm centrosomal function using bovine eggs. Fertil Steril. 2009;91:935.e11–4.Google Scholar
  197. 197.
    Tesarik J, Nagy ZP, Mendoza C, Greco E. Chemically and mechanically induced membrane fusion: non-activating methods for nuclear transfer in mature human oocytes. Hum Reprod. 2000;15:1149–54.PubMedCrossRefGoogle Scholar
  198. 198.
    Yamamoto D, Yasui T, Kobayashi C, Kitazato T, Iwasa T, Irahara M. Effect of high fat diet on artificial oocyte activation following superovulation in mice. Zygote. 2016;24:286–92.PubMedCrossRefGoogle Scholar
  199. 199.
    Hudmon A, Schulman H. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J. 2002;364:593–611.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Cuthbertson KS, Cobbold PH. Phorbol ester and sperm activate mouse oocytes by inducing sustained oscillations in cell Ca2+. Nature. 1985;316:541–2.PubMedCrossRefGoogle Scholar
  201. 201.
    Kim JW, Kim SD, Yang SH, Yoon SH, Jung JH, Lim JH. Successful pregnancy after SrCl2 oocyte activation in couples with repeated low fertilization rates following calcium ionophore treatment. Syst Biol Reprod Med. 2014;60:177–82.PubMedCrossRefGoogle Scholar
  202. 202.
    Kishikawa H, Wakayama T, Yanagimachi R. Comparison of oocyte-activating agents for mouse cloning. Cloning. 1999;1:153–9.PubMedCrossRefGoogle Scholar
  203. 203.
    Liu Y, Cao YX, Zhang ZG, Xing Q. Artificial oocyte activation and human failed-matured oocyte vitrification followed by in vitro maturation. Zygote. 2013;21:71–6.PubMedCrossRefGoogle Scholar
  204. 204.
    Kyono K, Kumagai S, Nishinaka C, Nakajo Y, Uto H, Toya M, Sugawara J, Araki Y. Birth and follow-up of babies born following ICSI using SrCl2 oocyte activation. Reprod Biomed Online. 2008;17:53–8.PubMedCrossRefGoogle Scholar
  205. 205.
    Yanagida K, Morozumi K, Katayose H, Hayashi S, Sato A. Successful pregnancy after ICSI with strontium oocyte activation in low rates of fertilization. Reprod Biomed Online. 2006;13:801–6.PubMedCrossRefGoogle Scholar
  206. 206.
    Brind S, Swann K, Carroll J. Inositol 1,4,5-trisphosphate receptors are downregulated in mouse oocytes in response to sperm or adenophostin A but not to increases in intracellular Ca2+ or egg activation. Dev Biol. 2000;223:251–65.PubMedCrossRefGoogle Scholar
  207. 207.
    Marshall IC, Taylor CW. Two calcium-binding sites mediate the interconversion of liver inositol 1,4,5-trisphosphate receptors between three conformational states. Biochem J. 1994;301:591–8.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Vanden Meerschaut F, Nikiforaki D, De Roo C, Lierman S, Qian C, Schmitt-John T, De Sutter P, Heindryckx B. Comparison of pre- and post-implantation development following the application of three artificial activating stimuli in a mouse model with round-headed sperm cells deficient for oocyte activation. Hum Reprod. 2013;28:1190–8.CrossRefGoogle Scholar
  209. 209.
    Sfontouris IA, Nastri CO, Lima ML, Tahmasbpourmarzouni E, Raine-Fenning N, Martins WP. Artificial oocyte activation to improve reproductive outcomes in women with previous fertilization failure: a systematic review and meta-analysis of RCTs. Hum Reprod. 2015;30:1831–41.PubMedCrossRefGoogle Scholar
  210. 210.
    Rybouchkin AV, Van der Straeten F, Quatacker J, De Sutter P, Dhont M. Fertilization and pregnancy after assisted oocyte activation and intracytoplasmic sperm injection in a case of round-headed sperm associated with deficient oocyte activation capacity. Fertil Steril. 1997;68:1144–7.CrossRefGoogle Scholar
  211. 211.
    Ebner T, Montag M, Oocyte Activation Study Group, Montag M, Van der Ven K, Van der Ven H, Ebner T, Shebl O, Oppelt P, Hirchenhain J, Krüssel J, Maxrath B, Gnoth C, Friol K, Tigges J, Wünsch E, Luckhaus J, Beerkotte A, Weiss D, Grunwald K, Struller D, Etien C. Live birth after artificial oocyte activation using a ready-to-use ionophore: a prospective multicentre study. Reprod Biomed Online. 2015;30:359–65.CrossRefGoogle Scholar
  212. 212.
    Aydinuraz B, Dirican EK, Olgan S, Aksunger O, Erturk OK. Artificial oocyte activation after intracytoplasmic morphologically selected sperm injection: a prospective randomized sibling oocyte study. Hum Fertil (Camb). 2016;19:282–8.CrossRefGoogle Scholar
  213. 213.
    Kim JW, Yang SH, Yoon SH, Kim SD, Jung JH, Lim JH. Successful pregnancy and delivery after ICSI with artificial oocyte activation by calcium ionophore in in-vitro matured oocytes: a case report. Reprod Biomed Online. 2015;30:373–7.PubMedCrossRefGoogle Scholar
  214. 214.
    Kang HJ, Lee SH, Park YS, Lim CK, Ko DS, Yang KM, Park DW. Artificial oocyte activation in intracytoplasmic sperm injection cycles using testicular sperm in human in vitro fertilization. Clin Exp Reprod Med. 2015;42:45–50.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Yoon HJ, Bae IH, Kim HJ, Jang JM, Hur YS, Kim HK, Yoon SH, Lee WD, Lim JH. Analysis of clinical outcomes with respect to spermatozoan origin after artificial oocyte activation with a calcium ionophore. J Assist Reprod Genet. 2013;30:1569–75.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Ebner T, Maurer M, Oppelt P, Mayer RB, Duba HC, Costamoling W, Shebl O. Healthy twin live-birth after ionophore treatment in a case of theophylline-resistant Kartagener syndrome. J Assist Reprod Genet. 2015;32:873–7.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Economou KA, Christopikou D, Tsorva E, Davies S, Mastrominas M, Cazlaris H, Koutsilieris M, Angelogianni P, Loutradis D. The combination of calcium ionophore A23187 and GM-CSF can safely salvage aged human unfertilized oocytes after ICSI. J Assist Reprod Genet. 2016;2016. (in press).Google Scholar
  218. 218.
    Ciapa B, Arnoult C. Could modifications of signalling pathways activated after ICSI induce a potential risk of epigenetic defects? Int J Dev Biol. 2011;55:143–52.PubMedCrossRefGoogle Scholar
  219. 219.
    Ozil JP, Banrezes B, Tóth S, Pan H, Schultz RM. Ca2+ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. Dev Biol. 2006;300:534–44.PubMedCrossRefGoogle Scholar
  220. 220.
    Deemeh MR, Tavalaee M, Nasr-Esfahani MH. Health of children born through artificial oocyte activation: a pilot study. Reprod Sci. 2014;22:322–8.PubMedCrossRefGoogle Scholar
  221. 221.
    Källén B, Finnström O, Lindam A, Nilsson E, Nygren KG, Otterblad PO. Congenital malformations in infants born after in vitro fertilization in Sweden. Birth Defects Res A Clin Mol Teratol. 2010;88:137–43.PubMedGoogle Scholar
  222. 222.
    Van Blerkom J, Cohen J, Johnson M. A plea for caution and more research in the ‘experimental’ use of ionophores in ICSI. Reprod Biomed Online. 2015;30:323–4.Google Scholar
  223. 223.
    Ebner T, Köster M, Shebl O, Moser M, Van der Ven H, Tews G, Montag M. Application of a ready-to-use calcium ionophore increases rates of fertilization and pregnancy in severe male factor infertility. Fertil Steril. 2012;98:1432–7.CrossRefGoogle Scholar
  224. 224.
    Vanden Meerschaut F, D’Haeseleer E, Gysels H, Thienpont Y, Dewitte G, Heindryckx B, Oostra A, Roeyers H, Van Lierde K, De Sutter P. Neonatal and neurodevelopmental outcome of children aged 3-10 years born following assisted oocyte activation. Reprod Biomed Online. 2014;28:54–63.CrossRefGoogle Scholar
  225. 225.
    Capalbo A, Ottolini CS, Griffin DK, Ubaldi FM, Handyside AH, Rienzi L. Artificial oocyte activation with calcium ionophore does not cause a widespread increase in chromosome segregation errors in the second meiotic division of the oocyte. Fertil Steril. 2016;105:807–14.PubMedCrossRefGoogle Scholar
  226. 226.
    Miller N, Biron-Shental T, Sukenik-Halevy R, Klement AH, Sharony R, Berkovitz A. Oocyte activation by calcium ionophore and congenital birth defects: a retrospective cohort study. Fertil Steril. 2016;106:590–6.PubMedCrossRefGoogle Scholar
  227. 227.
    Bridges PJ, Jeoung M, Kim H, Kim JH, Lee DR, Ko C, Baker DJ. Methodology matters: IVF versus ICSI and embryonic gene expression. Reprod Biomed Online. 2011;23:234–44.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Borges E Jr, de Almeida Ferreira Braga DP, de Sousa Bonetti TC, Iaconelli A Jr, Franco JG Jr. Artificial oocyte activation using calcium ionophore in ICSI cycles with spermatozoa from different sources. Reprod Biomed Online. 2009;18:45–52.PubMedCrossRefGoogle Scholar
  229. 229.
    Caglar Aytac P, Kilicdag EB, Haydardedeoglu B, Simsek E, Cok T, Parlakgumus HA. Can calcium ionophore “use” in patients with diminished ovarian reserve increase fertilization and pregnancy rates? A randomized, controlled study. Fertil Steril. 2015;104:1168–74.PubMedCrossRefGoogle Scholar
  230. 230.
    Swann K, Yu Y. The dynamics of calcium oscillations that activate mammalian eggs. Int J Dev Biol. 2008;52:585–94.PubMedCrossRefGoogle Scholar
  231. 231.
    Amdani SN, Yeste M, Jones C, Coward K. Phospholipase C zeta (PLCζ) and male infertility: clinical update and topical developments. Adv Biol Regul. 2016;61:58–67.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marc Yeste
    • 1
    Email author
  • Celine Jones
    • 2
  • Siti Nornadhirah Amdani
    • 2
  • Kevin Coward
    • 2
  1. 1.Department of Biology, Unit of Cell Biology, Faculty of SciencesUniversity of GironaGironaSpain
  2. 2.Nuffield Department of Obstetrics and GynaecologyUniversity of Oxford, Level 3, Women’s Centre, John Radcliffe HospitalOxfordUK

Personalised recommendations