Advertisement

Conventional IVF Insemination

  • Michael L. Reed
Chapter

Abstract

In vitro fertilization (IVF) began by using what we call today conventional or traditional insemination techniques. In its most simplistic form, isolated cumulus-enclosed oocytes (in vitro matured or in vivo matured) are co-incubated with a number of motile spermatozoa (isolated from semen) for defined or less well-defined time periods. After co-incubation, oocytes are examined for proof that sperm penetrated the zona pellucida and oolemma: fertilization events that culminate in (1) formation of pronuclei that may be visualized in the oocyte cytoplasm or (2) cellular division if oocytes are evaluated after presumed pronuclear syngamy and dissolution. On the surface, this approach appears to be very simple and not very challenging from a technical standpoint; in fact, achieving success with human in vitro fertilization is less challenging than working with a number of other mammalian species. Be that as it may, successful fertilization cannot in vitro occur without significant oocyte- and sperm-related events. Oocyte maturation involves resumption of meiosis (nuclear maturation) and completion of cytoplasmic activities, including production, accumulation, and activation of cytoplasmic components that allow nuclear maturation and support post-fertilization events (cytoplasmic maturation). Sperm maturation involves physiological changes that must occur during transit from the testicular environment to being housed within the epididymis prior to ejaculatory expulsion, which lead to fertilizing competence (capacitation) when the sperm approaches and binds to the oocyte zona pellucida.

Keywords

Conventional IVF insemination In vitro fertilization IVF Traditional insemination Sperm capacitation, Oocyte insemination 

References

  1. 1.
    Huxley A. Brave new world. New York: Harper Brothers; 1932.Google Scholar
  2. 2.
    Biggers JD. IVF and embryo transfer: historical origin and development. Reprod Biomed Online. 2012;25:118–27.PubMedCrossRefGoogle Scholar
  3. 3.
    Bavister BD. Early history of in vitro fertilization. Reproduction. 2002;124:181–96.PubMedCrossRefGoogle Scholar
  4. 4.
    Buster JE. Historical evolution of oocyte and embryo donation as a treatment for intractable infertility. In: Sauer M, editor. Principles of oocyte and embryo donation. New York: Springer-Verlag; 1998. p. 1–10.Google Scholar
  5. 5.
    Rock J, Menkin MF. In vitro fertilization and cleavage of human ovarian eggs. Science. 1944;100:105–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Austin CR. The capacitation of the mammalian sperm. Nature. 1952;23:326.CrossRefGoogle Scholar
  7. 7.
    Chang MC. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature. 1951;168:697–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Yanagimachi R, Chang MC. Fertilization of hamster eggs in vitro. Nature. 1963;19:281–2.CrossRefGoogle Scholar
  9. 9.
    Yanagimachi R, Chang MC. In vitro fertilization of golden hamster ova. J Exp Zool. 1964;156:361–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Bavister BD, Edwards RG, Steptoe PC. Identification of the midpiece and tail of the spermatozoon during fertilization of human eggs in vitro. J Reprod Fertil. 1969;20:159–60.PubMedCrossRefGoogle Scholar
  11. 11.
    Edwards RG, Bavister BD, Steptoe PC. Early stages of fertilization in vitro of human oocytes matured in vitro. Nature. 1969;15:632–5.CrossRefGoogle Scholar
  12. 12.
    Bavister BD. How animal embryo research led to the first documented human IVF. Reprod Biomed Online. 2001;4(Suppl 1):24–9.Google Scholar
  13. 13.
    Edwards RG. Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature. 1965a;23:349–51.CrossRefGoogle Scholar
  14. 14.
    Edwards RG. Maturation in vitro of human ovarian oocytes. Lancet. 1965b;6:926–9.CrossRefGoogle Scholar
  15. 15.
    Steptoe PC, Edwards RG. Birth after preimplantation of a human embryo. Lancet. 1978;2:366.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Paulini F, Silva RC, de Paula Rolo JLJ, et al. Ultrastructural changes in oocytes during folliculogeneis in domestic animals. J Ovarian Res. 2014;7:102.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Matsota P, Kaminioti E, Kostopanagiotou G. Anesthesia related toxic effects on in vitro fertilization outcome: burden of proof. Biomed Res Int. 2015;2015:475362.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bloom MS, Kim K, Kruger PC, et al. Associations between toxic metals in follicular fluid and in vitro fertilization (IVF) outcomes. J Assist Reprod Genet. 2012;29:1369–79.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kastrop PMM, de Graaf-Miltenburd LAM, Gutknecht DR, et al. Microbial contamination of embryo cultures in an ART laboratory: sources and management. Hum Reprod. 2007;22:2243–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pelzer ES, Allan JA, Waterhouse MA, et al. Microorganisms within human follicular fluid: effects on IVF. PLoS One. 2013;8:e59062.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Pomeroy KO. Contamination of human IVF cultures by microorganisms: a review. J Clin Embryol. 2012;13:11.Google Scholar
  22. 22.
    Saltes B, Molo MW, Binor Z, et al. Bacterial contamination after transvaginal aspiration (TVA) of oocytes. J Assist Reprod Genet. 1995;12:657–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Lavy G, Boyers SP, DeCherney AH. Hyaluronidase removal of the cumulus oophorus increases in vitro fertilization. J In Vitro Fert Embryo Transf. 1988;5:257–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Jaiswal BS, Tur-Kaspa I, Dor J, et al. Human sperm chemotaxis: is progesterone a chemoattractant? Biol Reprod. 1999;60:1314–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Oren-Benaroya R, Orvieto R, Gakamsky A, et al. The sperm chemoattractant secreted from human cumulus cells is progesterone. Hum Reprod Update. 2008;23:2339–45.CrossRefGoogle Scholar
  26. 26.
    Henkel R. Sperm preparation: state-of-the-art-physiological aspects and application of advanced sperm preparation methods. Asian J Androl. 2012;14:260–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Said AH, Reed ML. Increased count, motility, and total motile sperm cells collected across three consecutive ejaculations within 24 h of oocyte retrieval: implications for management of men presenting with low numbers of motile sperm for assisted reproduction. J Assist Reprod Genet. 2015;32:1049–55.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bianchi V, Macchiarelli G, Borini A, et al. Fine morphological assessment of quality of human mature oocytes after slow freezing or vitrification with a closed device: a comparative analysis. Reprod Biol Endocrinol. 2014;12:110.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Coticchio G, Borini A, Distratis V, et al. Qualitative and morphometric analysis of the ultrastructure of human oocytes cryopreserved by two alternative slow cooling protocols. J Assist Reprod Genet. 2010;27:131–40.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Rienzi L, Gracia C, Maggiulli R, et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 2016;  https://doi.org/10.1093/humupd/dmw038.
  31. 31.
    Chang EM, Song HS, Lee DR, et al. In vitro maturation of human oocytes: its role in infertility treatment and new possibilities. Clin Exp Reprod Med. 2014;41:41–6.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Sauerburn-Cutler MT, Vega M, Keltz M, et al. In vitro maturation and its role in clinical assisted reproductive technology. Obstet Gynecol Surv. 2015;70:45–57.CrossRefGoogle Scholar
  33. 33.
    Walls M, Junk S, Ryan JP, et al. IVF versus ICSI for the fertilization of in-vitro matured human oocytes. Reprod Biomed Online. 2012;25:603–7.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Beall SA, DeCherney A. History and challenges surrounding ovarian stimulation in the treatment of infertility. Fertil Steril. 2012;97:795–801.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    von Wolff M, Kollmann Z, Fluck CE, et al. Gonadotropin stimulation for in vitro fertilization significantly alters the hormone milieu in follicular fluid: a comparative study between natural cycle IVF and conventional IVF. Hum Reprod. 2014;29:1049–57.CrossRefGoogle Scholar
  36. 36.
    Jungheim ES, Meyer M, Broughton DE. Best practices for controlled ovarian stimulation. Semin Reprod Med. 2015;33:77–82.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Carabatsos MJ, Sellitto C, Goodenough DA, et al. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol. 2000;15:167–79.CrossRefGoogle Scholar
  38. 38.
    Buccione R, Schroeder AC, Eppig JJ. Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol Reprod. 1990;43:543–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Watson AJ. Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence. J Anim Sci. 2014;85(E.Suppl):E1–3.Google Scholar
  40. 40.
    Swain JE, Pool TB. ART failure: oocyte contributions to unsuccessful fertilization. Hum Reprod Update. 2008;14:431–46.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Boehlen D, Schmid HP. Novel use of fine needle aspiration of seminal vesicles for sperm retrieval in infertile men. Urology. 2005;66:880.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Cerruto MA, Novella G, Antoniolli SZ, et al. Use of transperineal fine needle aspiration of seminal vesicles to retrieve sperm in a man with obstructive azoospermia. Fertil Steril. 2006;86:1764e7–9.CrossRefGoogle Scholar
  43. 43.
    Harris SE, Sandlow JL. Sperm acquisition in nonobstructive azoospermia: what are the options? Urol Clin North Am. 2008;35:235–42.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Healy MW, Yauger BJ, James AN, et al. Seminal vesicle aspiration from wounded warriors. Fertil Steril. 2016;106:579–83.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Bernie AM, Ramasamy R, Stember DS, et al. Microsurgical epididymal sperm aspiration: indications, techniques and outcomes. Asian J Androl. 2013;14:40–3.CrossRefGoogle Scholar
  46. 46.
    Cooper TG. In defense of a function for the human epididymis. Fertil Steril. 1990;54:965–75.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Cooper TG. The human epididymis, sperm maturation and storage. ANIR-ANHP. 2007;9:18–24.Google Scholar
  48. 48.
    Cooper TG. Recent advances in sperm maturation in the human epididymis. Androl. 2002;12:38.CrossRefGoogle Scholar
  49. 49.
    Cornwall GA. New insights into epididymal biology and function. Hum Reprod Update. 2009;15:213–27.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hinton BT. What does the epididymis do and how does it do it? In: Robaire B, Chan P, editors. Handbook of andrology. 2nd ed. Lawrence: Allen Press Inc; 2010.Google Scholar
  51. 51.
    Brackett BG. Advances in animal in vitro fertilization. In: Wolf DP, Zelinski-Wooten M, editors. Contemporary endocrinology: assisted fertilization and nuclear transfer in mammals. Tolowa: Humana Press Inc; 2001. p. 21–51.CrossRefGoogle Scholar
  52. 52.
    Silber SJ, Balmaceda J, Borrero C, et al. Pregnancy with sperm aspiration from the proximal head of the epididymis: a new treatment for congenital absence of the vas deferens. Fertil Steril. 1988;50:525–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Hirsh AV, Mills C, Bekir J, et al. Andrology: factors influencing the outcome of in-vitro fertilization with epididymal spermatozoa in irreversible obstructive azoospermia. Hum Reprod. 1994;9:1710–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Silber SJ, Nagy ZP, Liu J, et al. Conventional in-vitro fertilization versus intracytoplasmic sperm injection for patients requiring microsurgical sperm aspiration. Hum Reprod. 1994;9:1705–9.CrossRefGoogle Scholar
  55. 55.
    Bjorndahl L, Mohammadieh M, Pourian M, et al. Contamination by seminal plasma factors during sperm selection. J Androl. 2005;26:170–3.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Green S, Fishel S, Rowe P. The incidence of spontaneous acrosome reaction in homogeneous populations of hyperactivated spermatozoa. Hum Reprod. 1999;14:1819–22.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Aitken RJ, Nixon B. Sperm capacitation: a distant landscape glimpsed but not explored. Mol Hum Reprod. 2013;19:785–93.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Bedford JM. Sperm capacitation and fertilization in mammals. Biol Reprod Suppl. 1970;2:128–58.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Baldi E, Luconi M, Bonaccorsi L, Muratori M, Forti G. Intracellular events and signaling pathways involved in sperm acquisition of fertilizing capacity and acrosome reaction. Front Biosci. 2000;5:E110–23.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Sakkas D, Leppens-Luisier G, Lucas H, Chardonnens D, Campana A, Franken DR, Urner F. Localization of tyrosine phosphorylated proteins in human sperm and relation to capacitation and zona pellucida binding. Biol Reprod. 2003;68:1463–9.PubMedCrossRefGoogle Scholar
  61. 61.
    De Jonge C. Biological basis for human capacitation. Hum Reprod Update. 2005;11:205–14.PubMedCrossRefGoogle Scholar
  62. 62.
    Mitchell LA, Nixon B, Aitken RJ. Analysis of chaperone proteins associated with human spermatozoa during capacitation. Mol Hum Reprod. 2007;13:605–13.PubMedCrossRefGoogle Scholar
  63. 63.
    Ickowicz D, Finkelstein M, Breitbart H. Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases. Asian J Androl. 2012;14:816–21.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Tosti E, Menezo Y. Gamete activation: basic knowledge and clinical applications. Hum Reprod Update. 2016;22:420–39.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Swain JE. Is there an optimal pH for culture media used in clinical IVF? Hum Reprod Update. 2012;18:333–9.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Cross NL. Effect of pH on the development of acrosomal responsiveness of human sperm. Andrologia. 2007;39:55–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update. 2008;14:647–57.PubMedCrossRefGoogle Scholar
  68. 68.
    Contri A, Gloria A, Robbe D, Valorz C, Wegher L, Carluccio A. Kinematic study on the effect of pH on bull sperm function. Anim Reprod Sci. 2013;136:252–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhou J, Chen L, Li J, Hong Z, Xie M, Chen S, Yao B. The semen pH affects sperm motility and capacitation. PLoS One. 2015;10:e0132974.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kirichok Y, Lishko PV. Rediscovering sperm ion channels with the patch-clamp technique. Mol Hum Reprod. 2011;17:478–99.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Nishigaki T, Jose O, Gonzalez-Cota Al, et al. Intracellular pH in sperm physiology. Biochem Biophys Res Cummun. 2014;450:1149–58.CrossRefGoogle Scholar
  72. 72.
    Chang J-C, Oude-Elferink RPJ. Role of the bicarbonate-responsive soluble adenylyl cyclase in pH sensing and metabolic regulation. Front Physiol. 2014;5:42.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Battistone MA, Da Ros VG, Salicioni AM, Navarrete FA, Krapf D, Visconi PE, Cusnicu PS. Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. Mol Hum Reprod. 2013;19:570–80.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hereng TH, Elgstoen KB, Eide L, Rosendal KR, Skalhegg BS. Serum albumin and HCO3- regulate separate pools of ATP in human spermatozoa. Hum Reprod. 2014;29:918–30.PubMedCrossRefGoogle Scholar
  75. 75.
    Morbeck DE, Krisher RL, Herrick JR, et al. Composition of commercial media used for human embryo culture. Fertil Steril. 2014;102:759–766.e9.PubMedCrossRefGoogle Scholar
  76. 76.
    Swain JE, Pool TB. New pH-buffering system for media utilized during gamete and embryo manipulations for assisted reproduction. Reprod Biomed Online. 2009;18:799–810.CrossRefGoogle Scholar
  77. 77.
    Will MA, Clark NA, Swain JE. Biological pH buffers in IVF: help or hindrance to success. J Assist Reprod Genet. 2011;28:711–24.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Parinaud J, Milhet P, Vietez G, et al. Human sperm capacitation and in-vitro fertilization in a chemically defined and protein-free SMART1. Hum Reprod. 1998;13:2579–82.PubMedCrossRefGoogle Scholar
  79. 79.
    Parinaud J, Milhet P, Vietez G, et al. Use of a medium devoid of any human or animal compound (SMART2) for embryo culture in intracytoplasmic sperm injection. J Assist Reprod Genet. 1999;16:13–6.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Peirce KL, Roberts P, Ali J, et al. The preparation and culture of washed human sperm: a comparison of a suite of protein-free media with media containing human serum albumin. Asian Pac J Reprod. 2015;4:222–7.CrossRefGoogle Scholar
  81. 81.
    Shih YF, Tzeng SL, Chen WJ, Huang CC, Chen HH, Lee TH, Lee MS. Effects of synthetic serum supplementation in sperm preparation media on sperm capacitation and function test results. Oxid Med Cell Longev. 2016;2016:1027158.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Leonard PH, Charlesworth MC, Benson L, et al. Variability in protein quality used for embryo culture: embryotoxicity of the stabilizer octonoic acid. Fertil Steril. 2013;100:544–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Minhas BS, Ripps BA. Methods for enhancement of sperm function. Front Biosci. 1996;1:e65–71.PubMedCrossRefGoogle Scholar
  84. 84.
    Buffone MG, Wertheimer EV, Visconti PE, et al. Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim Biophys Acta. 2014;1842:2610–20.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Reed ML. Culture systems: embryo density. Methods Mol Biol. 2012;912:273–312.PubMedGoogle Scholar
  86. 86.
    Smith GD, Takayama S, Swain JE. Rethinking in vitro embryo culture: new developments in culture platforms and potential to improve assisted reproductive technologies. Biol Reprod. 2012;86:1–10.Google Scholar
  87. 87.
    Munch EM, Sparks AE, Duran HE, et al. Lack of carbon air filtration impacts early embryo development. J Assist Reprod Genet. 2015;32:1009–17.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Wolf DP, Byrd W, Dandekar P, et al. Sperm concentration and the fertilization of human eggs in vitro. Biol Reprod. 1984;31:837–48.PubMedCrossRefGoogle Scholar
  89. 89.
    Oehninger S, Kruger TF, Simon T, et al. A comparative analysis of embryo implantation potential in patients with severe teratozoospermia undergoing in-vitro fertilization with a high insemination concentration or intracytoplasmic sperm injection. Hum Reprod. 1996;11:1086–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Chemes HE, Rawe VY. Sperm pathology: a step beyond descriptive morphology. Origin, characterization and fertility potential of abnormal sperm phenotypes in infertile men. Hum Reprod Update. 2003;9:405–28.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Liu DY, Baker HWG. Defective sperm-zona pellucida interaction: a major cause of fertilization failure in clinical in-vitro fertilization. Hum Reprod. 2000;15:702–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Liu DY, Garrett C, Baker HWG. Low proportions of sperm can bind to the zona pellucida of human oocytes. Hum Reprod. 2003;18:2382–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Ming L, Yuan C, Ping Z, et al. Conventional in vitro fertilization maybe yields more available embryos than intracytoplasmic sperm injection for patients with no indications for ICSI. Int J Clin Exp Med. 2015;8:21593–8.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Ohgi S, Hagihara C, Anakubo H, et al. A comparison of the clinical outcomes of embryo derived from intracytoplasmic sperm injection after early fertilization check and conventional insemination using sibling oocytes. Arch Gynecol Obstet. 2016;293:887–92.PubMedCrossRefGoogle Scholar
  95. 95.
    Staessen C, Camus M, Clasen K, et al. Conventional in-vitro fertilization versus intracytoplasmic sperm injection in sibling oocytes from couples with tubal infertility and normozoospermic semen. Hum Reprod. 1999;14:2474–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Trounsen AO, Mohr LR, Wood C, et al. Effect of delayed insemination on in-vitro fertilization, culture and transfer of human embryos. J Reprod Fertil. 1982;64:285–94.CrossRefGoogle Scholar
  97. 97.
    Jacobs M, Stolwijk AM, Wetzels AMM. The effect of insemination/injection time on the results of IVF and ICSI. Hum Reprod. 2001;16:1708–13.PubMedCrossRefGoogle Scholar
  98. 98.
    Gianaroli L, Magli MC, Ferraretti AP, et al. Reducing the time of sperm-oocyte interaction in human in-vitro fertilization improves the implantation rate. Hum Reprod. 1996;11:166–71.PubMedCrossRefGoogle Scholar
  99. 99.
    Xiong S, Han W, Liu JX, et al. Effects of cumulus cells removal after 6 h co-incubation of gametes on the outcomes of human IVF. J Assist Reprod Genet. 2011;28:1205–11.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Scott L, Finn A, O’Leary T, McLellan S, Hill J. Morphological parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. Hum Reprod. 2007;22:230–40.PubMedCrossRefGoogle Scholar
  101. 101.
    Yanez LZ, Han J, Behr BB, et al. Human oocyte developmental potential is predicted by mechanical properties within hours of fertilization. Nat Commun. 2016;24:10809.CrossRefGoogle Scholar
  102. 102.
    Azzarello A, Hoest T, Mikkelsen AL. The impact of pronuclei morphology and dynamicity of live birth outcome and time-lapse culture. Hum Reprod. 2012;27:2649–57.CrossRefGoogle Scholar
  103. 103.
    Caglar GS, Hammadeh M, Asimakopoulos B, et al. In vivo and in vitro decondensation of human sperm and assisted reproduction technologies. In Vivo. 2005;19:623–30.PubMedGoogle Scholar
  104. 104.
    Sutovsky P, Schatten G. Paternal contributions to the mammalian oocyte: fertilization after sperm egg fusion. Int Rev Cytol. 2000;195:1–65.PubMedGoogle Scholar
  105. 105.
    Van Blerkom J, Davis P, Alexander S. Occurrence of maternal and paternal spindles in unfertilized human oocytes: possible relationship to nucleation defects after silent fertilization. Reprod Biomed Online. 2004;8:454–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Van Blerkom J, Davis P, Merriam J, et al. Nuclear and cytoplasmic dynamics of sperm penetration, pronuclear formation and microtubule organization during fertilization and early preimplantation development in the human. Hum Reprod Update. 1995;1:429–61.CrossRefGoogle Scholar
  107. 107.
    Williams CJ. Signaling mechanisms of mammalian oocyte activation. Hum Reprod Update. 2002;8:313–21.PubMedCrossRefGoogle Scholar
  108. 108.
    Capmany G, Taylor A, Braude PR, et al. The timing of pronuclear formation, DNA synthesis and cleavage in the human 1-cell embryo. Mol Hum Reprod. 1996;2:299–306.PubMedCrossRefGoogle Scholar
  109. 109.
    Lassalle B, Testart J. Sequential transformations of human sperm nucleus in human egg. J Reprod Fertil. 1991;91:393–402.PubMedCrossRefGoogle Scholar
  110. 110.
    Nagy ZP, Janssenswillen C, Jansssens R, et al. Timing of oocyte activation, pronucleus formation and cleavage in humans after intracytoplasmic sperm injection (ICSI) with testicular sperm and after ICSI or in-vitro fertilization on sibling oocytes with ejaculated sperm. Hum Reprod. 1998;13:1606–12.PubMedCrossRefGoogle Scholar
  111. 111.
    Snook RR, Hosken DJ, Karr TL. The biology and evolution of polyspermy: insights from cellular and functional studies of sperm and centrosomal behavior in the fertilized egg. Reproduction. 2011;142:779–92.PubMedCrossRefGoogle Scholar
  112. 112.
    Malter HE, Cohen J. Embryonic development after microsurgical repair of polyspermic human zygotes. Fertil Steril. 1989;52:373–80.PubMedCrossRefGoogle Scholar
  113. 113.
    Papale L, Fiorentino A, Montag M, et al. The zygote. Hum Reprod. 2012;27:SI:i22–49.CrossRefGoogle Scholar
  114. 114.
    van der Ven HH, Al-Hasani S, Diedrich K, et al. Polyspermy and in vitro fertilization of human oocytes: frequency and possible causes. Ann N Y Acad Sci. 1985;442:88–95.PubMedCrossRefGoogle Scholar
  115. 115.
    Dale B, DeFelice L. Polyspermy prevention: facts and artifacts? J Assist Reprod Genet. 2011;28:199–207.PubMedCrossRefGoogle Scholar
  116. 116.
    Mio Y, Iwata K, Yumoto K, et al. Possible mechanism of polyspermy block in human oocytes observed by time-lapse cinematography. J Assist Reprod Genet. 2012;29:951–6.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Reed ML, Ezeh PC, Hamic A, et al. Polyspermic and polygynic fertilization: influence of oocyte source and insemination technique – a retrospective analysis. Fertil Steril. 2008;90(Suppl 1):S340.CrossRefGoogle Scholar
  118. 118.
    Porter R, Han T, Tucker MJ, et al. Estimation of second polar body retention rate after conventional insemination and intracytoplasmic sperm injection: in vitro observations from more than 5000 human oocytes. J Assist Reprod Genet. 2003;20:371–6.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Baltz JM. Connections between preimplantation embryo physiology and culture. J Assist Reprod Genet. 2013;30:1001–7.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril. 2008;90:473–83.PubMedCrossRefGoogle Scholar
  121. 121.
    Chronopoulou E, Harper JC. IVF culture media: past, present, future. Hum Reprod Update. 2015;21:39–55.PubMedCrossRefGoogle Scholar
  122. 122.
    Gardner DK. Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod Fertil Dev. 2008;20:9–18.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Mantikou E, Youssef MAFM, van Wely M, et al. Embryo culture media and IVF/ICSI success rates: a systematic review. Hum Reprod Update. 2013;19:210–20.PubMedCrossRefGoogle Scholar
  124. 124.
    Swain JE, Carrell D, Cobo A, et al. Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential. Fertil Steril. 2016;105:571–87.PubMedCrossRefGoogle Scholar
  125. 125.
    Hwang K, Lamb DJ. The sperm penetration assay for the assessment of fertilization capacity. Methods Mol Biol. 2013;927:103–11.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Oehninger S, Franken DR, Ombelet W. Sperm functional tests. Fertil Steril. 2014;102:1528–33.PubMedCrossRefGoogle Scholar
  127. 127.
    Wiser A, Sachar S, Ghetler Y, et al. Assessment of sperm hyperactivated motility and acrosome reaction can discriminate the use of spermatozoa for conventional in vitro fertilisation or intracytoplasmic sperm injection: preliminary results. Andrologia. 2014;46:313–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Kuczynski W, Dhont M, Grygoruk C, et al. Rescue ICSI of unfertilized oocytes after IVF. Hum Reprod. 2002;17:2423–7.PubMedCrossRefGoogle Scholar
  129. 129.
    Singh N, Malhorta N, Shende U, et al. Successful live birth after rescue ICSI following failed fertilization. J Hum Reprod Sci. 2013;6:77–8.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Cozzubbo T, Neri QV, Paniza T, et al. Delayed pronuclear appearance as an indication of compromised oocyte repair capacity. Fertil Steril. 2015;104(Suppl):e303.CrossRefGoogle Scholar
  131. 131.
    Stringfellow DA. Recommendations for the sanitary handling of in-vivo-derived embryos. In: Stringfellow DA, Seidel SM, editors. Manual of the International Embryo Transfer Society. 3rd ed. Savoy: International Embryo Transfer Society; 1998. p. 79–84.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael L. Reed
    • 1
  1. 1.Fertility Center of New MexicoAlbuquerqueUSA

Personalised recommendations