Assessment of Sperm Chromatin Damage by TUNEL Method Using Benchtop Flow Cytometer

  • Ana D. Martins
  • Rakesh Sharma
  • Ashok AgarwalEmail author


Routine semen analysis is the basic step in the laboratory evaluation of male fertility; however, it cannot explain why men are infertile even when the semen parameters are normal. Many studies evaluating sperm DNA integrity have demonstrated an inverse association between DNA fragmentation and fertilization and pregnancy rates. Advance molecular techniques allow the measurement of DNA fragmentation. A brief description of each technique is provided in this chapter. As these techniques are becoming more accessible to the clinical and research laboratories, the number of studies trying to relate DNA fragmentation with pregnancy outcome and fertilization rate is increasing every day. In this chapter we will describe the causes of sperm DNA fragmentation, highlight various techniques that are available to measure DNA fragmentation, and describe the measurement of DNA fragmentation by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay by flow cytometry and explain why TUNEL should be the method of choice in evaluating DNA fragmentation.


DNA fragmentation Flow cytometer Pregnancy Spermatozoa TUNEL 


  1. 1.
    Björndahl L, Kvist U. Structure of chromatin in spermatozoa. In: Genetic damage in human spermatozoa. New York: Springer; 2014. p. 1–11.Google Scholar
  2. 2.
    Fuentes-Mascorro G, Serrano H, Rosado A. Sperm chromatin. Arch Androl. 2000;45(3):215–25.PubMedCrossRefGoogle Scholar
  3. 3.
    World Health Organization. WHO laboratory manual for the examination and processing of human semen. Geneva: WHO Press; 2010.Google Scholar
  4. 4.
    Esteves SC. Clinical relevance of routine semen analysis and controversies surrounding the 2010 World Health Organization criteria for semen examination. Int Braz J Urol. 2014;40(4):433–53.CrossRefGoogle Scholar
  5. 5.
    Hamada A, Esteves SC, Nizza M, Agarwal A. Unexplained male infertility: diagnosis and management. Int Braz J Urol. 2012;38(5):576–94.PubMedCrossRefGoogle Scholar
  6. 6.
    Gosálvez J, Lopez-Fernandez C, Fernandez J, Esteves S, Johnston S. Unpacking the mysteries of sperm DNA fragmentation: ten frequently asked questions. J Reprod Biotech Fertil. 2015;4 Scholar
  7. 7.
    Saleh RA, Agarwal A, Nelson DR, Nada EA, El-Tonsy MH, Alvarez JG, Thomas AJ, Sharma RK. Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril. 2002;78(2):313–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36.PubMedCrossRefGoogle Scholar
  9. 9.
    Evenson D, Jost L, Marshall D, Zinaman M, Clegg E, Purvis K, De Angelis P, Claussen O. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14(4):1039–49.PubMedCrossRefGoogle Scholar
  10. 10.
    Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril. 2003;80(4):895–902.PubMedCrossRefGoogle Scholar
  11. 11.
    Spanò M, Bonde JP, Hjøllund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. Fertil Steril. 2000;73(1):43–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, Meyer A, Nelson DR, Thomas AJ. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79:1597–605.PubMedCrossRefGoogle Scholar
  13. 13.
    Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA®) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81(5):1289–95.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Lin M-H, Lee RK-K, Li S-H, Lu C-H, Sun F-J, Hwu Y-M. Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil Steril. 2008;90(2):352–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008;23(12):2663–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Giwercman A, Lindstedt L, Larsson M, Bungum M, Spano M, Levine RJ, Rylander L. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case–control study. Int J Androl. 2010;33(1):e221.PubMedCrossRefGoogle Scholar
  17. 17.
    Wells D, Bermudez M, Steuerwald N, Thornhill A, Walker D, Malter H, Delhanty J, Cohen J. Expression of genes regulating chromosome segregation, the cell cycle and apoptosis during human preimplantation development. Hum Reprod. 2005;20(5):1339–48.PubMedCrossRefGoogle Scholar
  18. 18.
    Gasca S, Pellestor F, Assou S, Loup V, Anahory T, Dechaud H, De Vos J, Hamamah S. Identifying new human oocyte marker genes: a microarray approach. Reprod Biomed Online. 2007;14(2):175–83.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gledhill BL, Gledhill MP, Rigler RJ, Ringertz NR. Changes in deoxyribonucleoprotein during spermiogenesis in the bull. Exp Cell Res. 1966;41(3):652–65.PubMedCrossRefGoogle Scholar
  20. 20.
    Evenson D, Darzynkiewicz Z, Melamed M. Relation of mammalian sperm chromatin heterogeneity to fertility. Science. 1980;210(4474):1131–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Aravindan G, Bjordahl J, Jost L, Evenson D. Susceptibility of human sperm to in situ DNA denaturation is strongly correlated with DNA Strand breaks identified by single-cell electrophoresis. Exp Cell Res. 1997;236(1):231–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res. 1993;207(1):202–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Fernandez JL, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24(1):59–66.PubMedGoogle Scholar
  24. 24.
    Pienta KJ, Coffey DS. A structural analysis of the role of the nuclear matrix and DNA loops in the organization of the nucleus and chromosome. J Cell Sci. 1984;1984(Supplement 1):123–35.CrossRefGoogle Scholar
  25. 25.
    Ioannou D, Miller D, Griffin DK, Tempest HG. Impact of sperm DNA chromatin in the clinic. J Assist Reprod Genet. 2016;33(2):157–66.PubMedCrossRefGoogle Scholar
  26. 26.
    Ward WS, Coffey D. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod. 1991;44(4):569–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Ward WS, Coffey DS. Specific organization of genes in relation to the sperm nuclear matrix. Biochem Biophys Res Commun. 1990;173(1):20–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update. 2003;9(4):331–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Poccia D. Remodeling of nucleoproteins during gametogenesis, fertilization, and early development. In: International review of cytology, vol. 105. Burlington: Elsevier; 1986. p. 1–65.Google Scholar
  30. 30.
    Rey RA. Commentary on sperm DNA fragmentation testing clinical guideline. Transl Androl Urol. 2017;6(Suppl 4):S522.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Aitken R, Bronson R, Smith T, De Iuliis G. The source and significance of DNA damage in human spermatozoa; a commentary on diagnostic strategies and straw man fallacies. Mol Hum Reprod. 2013;19(8):475–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Bennetts LE, Aitken RJ. A comparative study of oxidative DNA damage in mammalian spermatozoa. Mol Reprod Dev. 2005;71(1):77–87.PubMedCrossRefGoogle Scholar
  33. 33.
    Zini A, Albert O, Robaire B. Assessing sperm chromatin and DNA damage: clinical importance and development of standards. Andrology. 2014;2(3):322–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Aitken RJ, Gordon E, Harkiss D, Twigg JP, Milne P, Jennings Z, Irvine DS. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod. 1998;59(5):1037–46.PubMedCrossRefGoogle Scholar
  35. 35.
    Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl. 2002;23(1):25–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Fernández JL, de la Calle JF, Tamayo M, Cajigal D, Agarwal A, Gosálvez J. Sperm DNA integrity and male infertility: current perspectives. Arch Med Sci. 2009;2009(1):62.Google Scholar
  37. 37.
    Sakkas D, Moffatt O, Manicardi GC, Mariethoz E, Tarozzi N, Bizzaro D. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod. 2002;66(4):1061–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update. 2007;13(3):313–27.PubMedCrossRefGoogle Scholar
  39. 39.
    McPherson S, Longo F. Localization of DNase I-hypersensitive regions during rat spermatogenesis: stage-dependent patterns and unique sensitivity of elongating spermatids. Mol Reprod Dev. 1992;31(4):268–79.PubMedCrossRefGoogle Scholar
  40. 40.
    McPherson S, Longo F. Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Histochem. 1993;37(2):190–28.Google Scholar
  41. 41.
    Sharma R, Harlev A, Agarwal A, Esteves SC. Cigarette smoking and semen quality: a new meta-analysis examining the effect of the 2010 World Health Organization laboratory methods for the examination of human semen. Eur Urol. 2016;70(4):635–45.PubMedCrossRefGoogle Scholar
  42. 42.
    Lalinde-Acevedo PC, Mayorga-Torres BJM, Agarwal A, du Plessis SS, Ahmad G, Cadavid ÁP, Maya WDC. Physically active men show better semen parameters than their sedentary counterparts. Int J Fertil Steril. 2017;11(3):156.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Sharma R, Agarwal A, Harlev A, Esteves S. A meta analysis to study the effects of body mass index on sperm DNA fragmentation index in reproductive age men. Fertil Steril. 2017;108(3):e138–9.CrossRefGoogle Scholar
  44. 44.
    Harlev A, Agarwal A, Gunes SO, Shetty A, du Plessis SS. Smoking and male infertility: an evidence-based review. World J Mens Health. 2015;33(3):143–60.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Sharma R, Agarwal A, Rohra VK, Assidi M, Abu-Elmagd M, Turki RF. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reprod Biol Endocrinol. 2015;13(1):35.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Alshahrani S, Agarwal A, Assidi M, Abuzenadah AM, Durairajanayagam D, Ayaz A, Sharma R, Sabanegh E. Infertile men older than 40 years are at higher risk of sperm DNA damage. Reprod Biol Endocrinol. 2014;12(1):103.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kaarouch I, Bouamoud N, Madkour A, Louanjli N, Saadani B, Assou S, Aboulmaouhib S, Amzazi S, Copin H, Benkhalifa M. Paternal age: negative impact on sperm genome decays and IVF outcomes after 40 years. Mol Reprod Dev. 2018;85:271.PubMedCrossRefGoogle Scholar
  48. 48.
    Mathur PP, Huang L, Kashou A, Vaithinathan S, Agarwal A. Environmental toxicants and testicular apoptosis. Open Reprod Sci J. 2011;3:114–24.CrossRefGoogle Scholar
  49. 49.
    Martenies SE, Perry MJ. Environmental and occupational pesticide exposure and human sperm parameters: a systematic review. Toxicology. 2013;307:66–73.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Cho C-L, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18(2):186.PubMedCrossRefGoogle Scholar
  51. 51.
    Agarwal A, Mulgund A, Alshahrani S, Assidi M, Abuzenadah AM, Sharma R, Sabanegh E. Reactive oxygen species and sperm DNA damage in infertile men presenting with low level leukocytospermia. Reprod Biol Endocrinol. 2014;12(1):126.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Pourmasumi S, Sabeti P, Rahiminia T, Mangoli E, Tabibnejad N, Talebi AR. The etiologies of DNA abnormalities in male infertility: an assessment and review. Int J Reprod Biomed (Yazd). 2017;15(6):331.CrossRefGoogle Scholar
  53. 53.
    Ollero M, Gil-Guzman E, Lopez MC, Sharma RK, Agarwal A, Larson K, Evenson D, Thomas AJ Jr, Alvarez JG. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod. 2001;16(9):1912–21.PubMedCrossRefGoogle Scholar
  54. 54.
    Greco E, Scarselli F, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Franco G, Anniballo N, Mendoza C, Tesarik J. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20(1):226–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Laberge R-M, Boissonneault G. On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod. 2005;73(2):289–96.PubMedCrossRefGoogle Scholar
  56. 56.
    Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis: new insights in stage specificity and link to chromatin remodeling. Biol Reprod. 2004;70(4):910–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Muratori M, Marchiani S, Maggi M, Forti G, Baldi E. Origin and biological significance of DNA fragmentation in human spermatozoa. Front Biosci. 2006;11:1491–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Egozcue S, Blanco J, Vendrell J, Garcia F, Veiga A, Aran B, Barri P, Vidal F, Egozcue J. Human male infertility: chromosome anomalies, meiotic disorders, abnormal spermatozoa and recurrent abortion. Hum Reprod Update. 2000;6(1):93–105.PubMedCrossRefGoogle Scholar
  59. 59.
    Piomboni P, Stendardi A, Gambera L. Chromosomal aberrations and aneuploidies of spermatozoa. In: Genetic damage in human spermatozoa. New York: Springer; 2014. p. 27–52.CrossRefGoogle Scholar
  60. 60.
    Sloter E, Nath J, Eskenazi B, Wyrobek AJ. Effects of male age on the frequencies of germinal and heritable chromosomal abnormalities in humans and rodents. Fertil Steril. 2004;81(4):925–43.PubMedCrossRefGoogle Scholar
  61. 61.
    Ford JH, Schultz CJ, Correll AT. Chromosome elimination in micronuclei: a common cause of hypoploidy. Am J Hum Genet. 1988;43(5):733.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4(1):31–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Sakkas D, Mariethoz E, St John JC. Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp Cell Res. 1999;251(2):350–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Tease C, Hulten MA. Inter-sex variation in synaptonemal complex lengths largely determine the different recombination rates in male and female germ cells. Cytogenet Genome Res. 2004;107(3–4):208–15.PubMedCrossRefGoogle Scholar
  65. 65.
    Hann MC, Lau PE, Tempest HG. Meiotic recombination and male infertility: from basic science to clinical reality? Asian J Androl. 2011;13(2):212–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280–91.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993;75(6):1169–78.PubMedCrossRefGoogle Scholar
  68. 68.
    Sakkas D, Mariethoz E, John JCS. Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp Cell Res. 1999;251(2):350–5.PubMedCrossRefGoogle Scholar
  69. 69.
    McVicar CM, McClure N, Williamson K, Dalzell LH, Lewis SE. Incidence of Fas positivity and deoxyribonucleic acid double-stranded breaks in human ejaculated sperm. Fertil Steril. 2004;81:767–74.PubMedCrossRefGoogle Scholar
  70. 70.
    Burrello N, Arcidiacono G, Vicari E, Asero P, Di Benedetto D, De Palma A, Romeo R, D’agata R, Calogero AE. Morphologically normal spermatozoa of patients with secretory oligo-astheno-teratozoospermia have an increased aneuploidy rate. Hum Reprod. 2004;19(10):2298–302.PubMedCrossRefGoogle Scholar
  71. 71.
    Simon L, Emery BR, Carrell DT. Impact of sperm DNA damage in assisted reproduction. Best Pract Res Clin Obstet Gynaecol. 2017;44:38–56.PubMedCrossRefGoogle Scholar
  72. 72.
    Tomlinson M, White A, Barratt C, Bolton A, Cooke I. The removal of morphologically abnormal sperm forms by phagocytes: a positive role for seminal leukocytes? Hum Reprod. 1992;7(4):517–22.PubMedCrossRefGoogle Scholar
  73. 73.
    Pudney J, Anderson D. Organization of immunocompetent cells and their function in the male reproductive tract. In: Local immunity in reproductive tract tissues. Oxford: Oxford University Press; 1993. p. 131.Google Scholar
  74. 74.
    Kiessling AA, Lamparelli N, Yin H-Z, Seibel MM, Eyre RC. Semen leukocytes: friends or foes? Fertil Steril. 1995;64(1):196–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Barraud-Lange V, Pont J-C, Ziyyat A, Pocate K, Sifer C, Cedrin-Durnerin I, Fechtali B, Ducot B, Wolf JP. Seminal leukocytes are good Samaritans for spermatozoa. Fertil Steril. 2011;96(6):1315–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Aitken R, Baker HG. Seminal leukocytes: passengers, terrorists or good samaritans? Hum Reprod. 1995;10:1736.PubMedCrossRefGoogle Scholar
  77. 77.
    Hsu PC, Chen IY, Pan CH, Wu KY, Pan MH, Chen JR, Chen CJ, Chang-Chien GP, Hsu CH, Liu CS, Wu MT. Sperm DNA damage correlates with polycyclic aromatic hydrocarbons biomarker in coke-oven workers. Int Arch Occup Environ Health. 2006;79(5):349–56.PubMedCrossRefGoogle Scholar
  78. 78.
    Oh E, Lee E, Im H, Kang H-S, Jung W-W, Won NH, Kim E-M, Sul D. Evaluation of immuno- and reproductive toxicities and association between immunotoxicological and genotoxicological parameters in waste incineration workers. Toxicology. 2005;210(1):65–80.PubMedCrossRefGoogle Scholar
  79. 79.
    Migliore L, Naccarati A, Zanello A, Scarpato R, Bramanti L, Mariani M. Assessment of sperm DNA integrity in workers exposed to styrene. Hum Reprod. 2002;17(11):2912–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Morris ID. Sperm DNA damage and cancer treatment. Int J Androl. 2002;25(5):255–61.PubMedCrossRefGoogle Scholar
  81. 81.
    Tvrda E, Agarwal A, Alkuhaimi N. Male reproductive cancers and infertility: a mutual relationship. Int J Mol Sci. 2015;16(4):7230–60.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Esquerré-Lamare C, Isus F, Moinard N, Bujan L. Sperm DNA fragmentation after radioiodine treatment for differentiated thyroid cancer. Basic Clin Androl. 2015;25(1):8.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Sharma R, Biedenharn KR, Fedor JM, Agarwal A. Lifestyle factors and reproductive health: taking control of your fertility. Reprod Biol Endocrinol. 2013;11(1):66.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Esteves SC, Sánchez-Martín F, Sánchez-Martín P, Schneider DT, Gosálvez J. Comparison of reproductive outcome in oligozoospermic men with high sperm DNA fragmentation undergoing intracytoplasmic sperm injection with ejaculated and testicular sperm. Fertil Steril. 2015;104(6):1398–405.PubMedCrossRefGoogle Scholar
  85. 85.
    Oleszczuk K, Augustinsson L, Bayat N, Giwercman A, Bungum M. Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples. Andrology. 2013;1(3):357–60.PubMedCrossRefGoogle Scholar
  86. 86.
    Duru NK, Morshedi M, Oehninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil Steril. 2000;74(6):1200–7.CrossRefGoogle Scholar
  87. 87.
    Simon L, Emery BR, Carrell DT. Review: diagnosis and impact of sperm DNA alterations in assisted reproduction. Best Pract Res Clin Obstet Gynaecol. 2017;44:38–56.PubMedCrossRefGoogle Scholar
  88. 88.
    Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol. 2016;5(6):935.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Evenson D, Jost L. Sperm chromatin structure assay: DNA denaturability. Methods Cell Biol. 1994;42:159–76.PubMedCrossRefGoogle Scholar
  90. 90.
    Oleszczuk K, Giwercman A, Bungum M. Sperm chromatin structure assay in prediction of in vitro fertilization outcome. Andrology. 2016;4(2):290–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Bisht S, Faiq M, Tolahunase M, Dada R. Oxidative stress and male infertility. Nat Rev Urol. 2017;14(8):470–85.PubMedCrossRefGoogle Scholar
  92. 92.
    Kumar K, Deka D, Singh A, Mitra D, Vanitha B, Dada R. Predictive value of DNA integrity analysis in idiopathic recurrent pregnancy loss following spontaneous conception. J Assist Reprod Genet. 2012;29(9):861–7.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Gosálvez J, López-Fernández C, Fernández JL. Sperm chromatin dispersion test: technical aspects and clinical applications. In: Sperm Chromatin. Biological and Clinical Applications in Male Infertility and Assisted Reproduction. A. Zini and A. Agarwal (eds). Springer Science + Business Media, LLC. Springer Nature, New York, p. 151–70.CrossRefGoogle Scholar
  94. 94.
    Agarwal A, Cho C-L, Majzoub A, Esteves SC. The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility. Transl Androl Urol. 2017;6(Suppl 4):S720.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Feijó CM, Esteves SC. Diagnostic accuracy of sperm chromatin dispersion test to evaluate sperm deoxyribonucleic acid damage in men with unexplained infertility. Fertil Steril. 2014;101(1):58–63.e53.PubMedCrossRefGoogle Scholar
  96. 96.
    Sharma R, Ahmad G, Esteves SC, Agarwal A. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: protocol, reference values, and quality control. J Assist Reprod Genet. 2016;33(2):291–300.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Agarwal A, Gupta S, Sharma R. Measurement of DNA fragmentation in spermatozoa by TUNEL assay using bench top flow cytometer. In: Andrological evaluation of male infertility. Cham: Springer; 2016. p. 181–203.CrossRefGoogle Scholar
  98. 98.
    Shamsi M, Kumar R, Dada R. Evaluation of nuclear DNA damage in human spermatozoa in men opting for assisted reproduction. Indian J Med Res. 2008;127(2):115.PubMedGoogle Scholar
  99. 99.
    Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken R. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21(1):33–44.PubMedGoogle Scholar
  100. 100.
    Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–91.PubMedCrossRefGoogle Scholar
  101. 101.
    Fernández JL, Muriel L, Goyanes V, Segrelles E, Gosálvez J, Enciso M, LaFromboise M, De Jonge C. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil Steril. 2005;84(4):833–42.PubMedCrossRefGoogle Scholar
  102. 102.
    Gekas J, Thepot F, Turleau C, Siffroi J, Dadoune J, Briault S, Rio M, Bourouillou G, Carre-Pigeon F, Wasels R. Chromosomal factors of infertility in candidate couples for ICSI: an equal risk of constitutional aberrations in women and men. Hum Reprod. 2001;16(1):82–90.PubMedCrossRefGoogle Scholar
  103. 103.
    Sharma RK, Sabanegh E, Mahfouz R, Gupta S, Thiyagarajan A, Agarwal A. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010;76(6):1380–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Bareh GM, Jacoby E, Binkley P, Schenken RS, Robinson RD. Sperm deoxyribonucleic acid fragmentation assessment in normozoospermic male partners of couples with unexplained recurrent pregnancy loss: a prospective study. Fertil Steril. 2016;105(2):329–36.e1.PubMedCrossRefGoogle Scholar
  105. 105.
    Agarwal A, Cho C-L, Esteves SC. Should we evaluate and treat sperm DNA fragmentation? Curr Opin Obstet Gynecol. 2016;28(3):164–71.PubMedCrossRefGoogle Scholar
  106. 106.
    Zidi-Jrah I, Hajlaoui A, Mougou-Zerelli S, Kammoun M, Meniaoui I, Sallem A, Brahem S, Fekih M, Bibi M, Saad A. Relationship between sperm aneuploidy, sperm DNA integrity, chromatin packaging, traditional semen parameters, and recurrent pregnancy loss. Fertil Steril. 2016;105(1):58–64.PubMedCrossRefGoogle Scholar
  107. 107.
    Henkel R, Kierspel E, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, Menkveld R, Schill W-B, Kruger TF. DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod Biomed Online. 2003;7(4):477–84.PubMedCrossRefGoogle Scholar
  108. 108.
    Henkel R, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, Menkveld R, Gips H, Schill W-B, Kruger TF. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril. 2004;81(4):965–72.PubMedCrossRefGoogle Scholar
  109. 109.
    Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002;17(12):3122–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, Giwercman A. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2006;22(1):174–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Zini A, Sigman M. Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl. 2009;30(3):219–29.PubMedCrossRefGoogle Scholar
  112. 112.
    Høst E, Lindenberg S, Smidt-Jensen S. The role of DNA strand breaks in human spermatozoa used for IVF and ICSI. Acta Obstet Gynecol Scand. 2000;79(7):559–63.PubMedCrossRefGoogle Scholar
  113. 113.
    Huang C-C, Lin DP-C, Tsao H-M, Cheng T-C, Liu C-H, Lee M-S. Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril. 2005;84(1):130–40.PubMedCrossRefGoogle Scholar
  114. 114.
    Borini A, Tarozzi N, Bizzaro D, Bonu M, Fava L, Flamigni C, Coticchio G. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod. 2006;21(11):2876–81.PubMedCrossRefGoogle Scholar
  115. 115.
    Agarwal A, Gupta S, Sharma R. Andrological evaluation of male infertility: a laboratory guide. Cham: Springer; 2016.CrossRefGoogle Scholar
  116. 116.
    Esteves SC, Miyaoka R, Agarwal A. An update on the clinical assessment of the infertile male. Clinics. 2011;66(4):691–700.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Cho C-L, Agarwal A, Majzoub A, Esteves SC. Clinical utility of sperm DNA fragmentation testing: concise practice recommendations. Transl Androl Urol. 2017;6(Suppl 4):S366.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Medicine PCASR. The clinical utility of sperm DNA integrity testing: a guideline. Fertil Steril. 2013;99(3):673–7.CrossRefGoogle Scholar
  119. 119.
    Esteves SC, Gosálvez J, López-Fernández C, Núñez-Calonge R, Caballero P, Agarwal A, Fernández JL. Diagnostic accuracy of sperm DNA degradation index (DDSi) as a potential noninvasive biomarker to identify men with varicocele-associated infertility. Int Urol Nephrol. 2015;47(9):1471–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Saleh RA, Agarwal A, Sharma RK, Said TM, Sikka SC, Thomas AJ. Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril. 2003;80(6):1431–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Lewis SE, Aitken RJ, Conner SJ, De Iuliis G, Evenson DP, Henkel R, Giwercman A, Gharagozloo P. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reprod Biomed Online. 2013;27(4):325–37.PubMedCrossRefGoogle Scholar
  122. 122.
    Gorczyca W, Gong J, Darzynkiewicz Z. Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res. 1993;53(8):1945–51.PubMedGoogle Scholar
  123. 123.
    Sailer BL, Jost LK, Evenson DP. Mammalian sperm DNA susceptibility to in situ denaturation associated with the presence of DNA strand breaks as measured by the terminal deoxynucleotidyl transferase assay. J Androl. 1995;16(1):80–7.PubMedGoogle Scholar
  124. 124.
    Ribeiro S, Sharma R, Gupta S, Cakar Z, De Geyter C, Agarwal A. Inter-and intra-laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation. Andrology. 2017;5(3):477–85.PubMedCrossRefGoogle Scholar
  125. 125.
    Gupta S, Sharma R, Agarwal A. Inter-and intra-laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation. Curr Protoc Toxicol. 2017;74:16.11.11–22.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ana D. Martins
    • 1
    • 2
  • Rakesh Sharma
    • 1
  • Ashok Agarwal
    • 1
    Email author
  1. 1.Department of Urology and American Center for Reproductive MedicineCleveland ClinicClevelandUSA
  2. 2.Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in BiomedicineAbel Salazar Institute of Biomedical Sciences (ICBAS), University of PortoPortoPortugal

Personalised recommendations