Advertisement

Sperm Assessment: Novel Approaches and Their Indicative Value

  • Tania R. Dias
  • Chak-Lam Cho
  • Ashok AgarwalEmail author
Chapter

Abstract

Conventional approaches of semen assessment are the basis of male fertility evaluation. However, its clinical value has been questioned due to the poor correlation with reproductive outcomes. Results from the analysis of standard parameters such as motility, concentration, and morphology often lead to the misclassification of fertility status. Technological innovation and research discoveries allowed the development of additional laboratory tests to assess sperm function. One of the major focus areas is the evaluation of oxidative stress (OS), which is considered a major contributing factor to male infertility. Evaluation of OS by measurement of reactive oxygen species (ROS), total antioxidant capacity (TAC), ROS-TAC score, and oxidation-reduction potential (ORP) are some of the tests under investigation. The evaluation of sperm DNA fragmentation has demonstrated its potential in predicting reproductive outcomes. Clinical utility of sperm DNA fragmentation testing has been proposed, and it is gaining popularity among andrology laboratories. Other tests include the evaluation of acrosome reaction, sperm mitochondrial function, and antisperm antibodies. These tests should not be considered a replacement for basic semen analysis, but rather as complementary tests. The additional information may better delineate male fertility potential and provide important clues for the treatment of unexplained infertility. However, many of these tests are time-consuming and require expensive equipment and trained personnel. Lack of standardization of the assays also represents a major obstacle to their wide clinical application.

Keywords

Acrosome reaction Antisperm antibodies DNA fragmentation Oxidative stress Sperm function tests 

References

  1. 1.
    Centola GM. Semen assessment. Urol Clin. 2014;41(1):163–7.CrossRefGoogle Scholar
  2. 2.
    Carrell DT, Nyboe Andersen A, Lamb DJ. The need to improve patient care through discriminate use of intracytoplasmic sperm injection (ICSI) and improved understanding of spermatozoa, oocyte and embryo biology. Andrology. 2015;3(2):143–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, Haan EA, Chan A. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366(19):1803–13.PubMedCrossRefGoogle Scholar
  4. 4.
    Ford W. Ignorance but not bliss: too little is known about the determinants of semen quality. Asian J Androl. 2013;15(2):174.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Nallella KP, Sharma RK, Aziz N, Agarwal A. Significance of sperm characteristics in the evaluation of male infertility. Fertil Steril. 2006;85(3):629–34.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bracke A, Peeters K, Punjabi U, Hoogewijs D, Dewilde S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod Biomed Online. 2017;36(3):327–39.PubMedCrossRefGoogle Scholar
  7. 7.
    Leushuis E, van der Steeg JW, Steures P, Repping S, Bossuyt PM, Blankenstein MA, Mol BWJ, van der Veen F, Hompes PG. Reproducibility and reliability of repeated semen analyses in male partners of subfertile couples. Fertil Steril. 2010;94(7):2631–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Barazani Y, Agarwal A, Sabanegh ES. Functional sperm testing and the role of proteomics in the evaluation of male infertility. Urology. 2014;84(2):255–61.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang C, Swerdloff RS. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil Steril. 2014;102(6):1502–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909–50.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dias TR, Alves MG, Silva BM, Oliveira PF. Nutritional factors and male reproduction. In: Jégou B, Skinner MK, (Eds.), Encyclopedia of Reproduction, 2nd edition, volume 1. Waltham, MA: Elsevier. pp. 458–64.  https://doi.org/10.1016/B978-0-12-801238-3.64616-0.CrossRefGoogle Scholar
  12. 12.
    Doshi SB, Khullar K, Sharma RK, Agarwal A. Role of reactive nitrogen species in male infertility. Reprod Biol Endocrinol. 2012;10(1):109.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lobascio A, De Felici M, Anibaldi M, Greco P, Minasi M, Greco E. Involvement of seminal leukocytes, reactive oxygen species, and sperm mitochondrial membrane potential in the DNA damage of the human spermatozoa. Andrology. 2015;3(2):265–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Armstrong JS, Bivalacqua TJ, Chamulitrat W, Sikka S, Hellstrom WJ. A comparison of the NADPH oxidase in human sperm and white blood cells. Int J Androl. 2002;25(4):223–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Wiley L, Ashok D, Martin-Ruiz C, Talbot DC, Collerton J, Kingston A, Davies K, Chinnery PF, Catt M, Jagger C. Reactive oxygen species production and mitochondrial dysfunction in white blood cells are not valid biomarkers of ageing in the very old. PLoS One. 2014;9(3):e91005.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 2005;95(4):503–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9(12):678.PubMedCrossRefGoogle Scholar
  19. 19.
    Chatterjee S, Gagnon C. Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing. Mol Reprod Dev. 2001;59(4):451–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Agarwal A, Said TM, Bedaiwy MA, Banerjee J, Alvarez JG. Oxidative stress in an assisted reproductive techniques setting. Fertil Steril. 2006;86(3):503–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Agarwal A, Sharma RK, Sharma R, Assidi M, Abuzenadah AM, Alshahrani S, Durairajanayagam D, Sabanegh E. Characterizing semen parameters and their association with reactive oxygen species in infertile men. Reprod Biol Endocrinol. 2014;12(1):33.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Agarwal A, Gupta S, Sharma R. Reactive oxygen species (ROS) measurement, Andrological evaluation of male infertility. Switzerland: Springer; 2016. p. 155–63.CrossRefGoogle Scholar
  23. 23.
    Gosalvez J, Tvrda E, Agarwal A. Free radical and superoxide reactivity detection in semen quality assessment: past, present, and future. J Assist Reprod Genet. 2017;34(6):697–707.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Sharma R, Roychoudhury S, Singh N, Sarda Y. Methods to measure reactive oxygen species (ROS) and total antioxidant capacity (TAC) in the reproductive system. In: Oxidative stress in human reproduction. Switzerland: Springer; 2017. p. 17–46.CrossRefGoogle Scholar
  25. 25.
    Aziz N, Novotny J, Oborna I, Fingerova H, Brezinova J, Svobodova M. Comparison of chemiluminescence and flow cytometry in the estimation of reactive oxygen and nitrogen species in human semen. Fertil Steril. 2010;94(7):2604–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Kashou AH, Sharma R, Agarwal A. Assessment of oxidative stress in sperm and semen. In: Carrell D, Aston K, (eds). Spermatogenesis. Methods in Molecular Biology (Methods and Protocols), vol 927. Totowa, NJ: Humana Press; 2013.Google Scholar
  27. 27.
    Mahfouz R, Sharma R, Lackner J, Aziz N, Agarwal A. Evaluation of chemiluminescence and flow cytometry as tools in assessing production of hydrogen peroxide and superoxide anion in human spermatozoa. Fertil Steril. 2009;92(2):819–27.PubMedCrossRefGoogle Scholar
  28. 28.
    Oliveira PF, Tomás GD, Dias TR, Martins AD, Rato L, Alves MG, Silva BM. White tea consumption restores sperm quality in prediabetic rats preventing testicular oxidative damage. Reprod Biomed Online. 2015;31(4):544–56.PubMedCrossRefGoogle Scholar
  29. 29.
    Grotto D, Santa Maria L, Boeira S, Valentini J, Charão M, Moro A, Nascimento P, Pomblum V, Garcia S. Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography–visible detection. J Pharm Biomed Anal. 2007;43(2):619–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Colagar AH, Pouramir M, Marzony ET, Jorsaraei SGA. Relationship between seminal malondialdehyde levels and sperm quality in fertile and infertile men. Braz Arch Biol Technol. 2009;52(6):1387–92.CrossRefGoogle Scholar
  31. 31.
    Amarasekara D, Wijerathna S, Fernando C, Udagama P. Cost-effective diagnosis of male oxidative stress using the nitroblue tetrazolium test: useful application for the developing world. Andrologia. 2014;46(2):73–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Esfandiari N, Sharma RK, Saleh RA, Thomas AJ, Agarwal A. Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa. J Androl. 2003;24(6):862–70.PubMedCrossRefGoogle Scholar
  33. 33.
    Aitken RJ. Nitroblue tetrazolium (NBT) assay. Reprod Biomed Online. 2018;36(1):90–1.PubMedCrossRefGoogle Scholar
  34. 34.
    Kefer JC, Agarwal A, Sabanegh E. Role of antioxidants in the treatment of male infertility. Int J Urol. 2009;16(5):449–57.PubMedCrossRefGoogle Scholar
  35. 35.
    Wagner H, Cheng JW, Ko EY. Role of reactive oxygen species in male infertility: an updated review of literature. Arab J Urol. 2017;16(1):35–43.PubMedCrossRefGoogle Scholar
  36. 36.
    O’Flaherty C. The enzymatic antioxidant system of human spermatozoa. Adv Androl. 2014;2014:626374:15 p.Google Scholar
  37. 37.
    Hammadeh ME, Hamad MF. Reactive oxygen species and antioxidant in seminal plasma and their impact on male fertility. Int J Fertil Steril. 2009;3(3).Google Scholar
  38. 38.
    Majzoub A, Esteves SC, Gosálvez J, Agarwal A. Specialized sperm function tests in varicocele and the future of andrology laboratory. Asian J Androl. 2016;18(2):205.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Khosrowbeygi A, Zarghami N, Deldar Y. Correlation between sperm quality parameters and seminal plasma antioxidants status. Int J Reprod BioMed. 2012;2(2):58–64.Google Scholar
  40. 40.
    Koca Y, Özdal Ö, Celik M, Ünal S, Balaban N. Antioxidant activity of seminal plasma in fertile and infertile men. Arch Androl. 2003;49(5):355–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Moharram H, Youssef M. Methods for determining the antioxidant activity: a review. Alex J Fd Sci Technol. 2014;11(1):31–42.Google Scholar
  42. 42.
    Benzie IF, Strain J. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In: Methods in enzymology, vol. 299: Elsevier; 1999. p. 15–27.Google Scholar
  43. 43.
    Pahune PP, Choudhari AR, Muley PA. The total antioxidant power of semen and its correlation with the fertility potential of human male subjects. J Clin Diagn Res. 2013;7(6):991.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005;53(10):4290–302.PubMedCrossRefGoogle Scholar
  45. 45.
    Said TM, Kattal N, Sharma RK, Sikka SC, Thomas AJ, Mascha E, Agarwal A. Enhanced chemiluminescence assay vs colorimetric assay for measurement of the total antioxidant capacity of human seminal plasma. J Androl. 2003;24(5):676–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Mahfouz R, Sharma R, Sharma D, Sabanegh E, Agarwal A. Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertil Steril. 2009;91(3):805–11.PubMedCrossRefGoogle Scholar
  47. 47.
    Sharma RK, Pasqualotto FF, Nelson DR, Thomas AJ Jr, Agarwal A. The reactive oxygen species—total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod. 1999;14(11):2801–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Agarwal A, Du Plessis S, Sharma R, Samanta L, Harlev A, Ahmad G, Gupta S, Sabanegh E. Establishing the oxidation-reduction potential in semen and seminal plasma. Fertil Steril. 2015;104(3):e146.CrossRefGoogle Scholar
  49. 49.
    Bar-Or R, Bar-Or D, Rael LT. Method and apparatus for measuring oxidation-reduction potential: Google Patents; 2016.Google Scholar
  50. 50.
    Agarwal A, Gupta S, Sharma R. Oxidation–reduction potential measurement in ejaculated semen samples. In: Andrological evaluation of male infertility. Switzerland: Springer; 2016. p. 165–70.CrossRefGoogle Scholar
  51. 51.
    Agarwal A, Roychoudhury S, Sharma R, Gupta S, Majzoub A, Sabanegh E. Diagnostic application of oxidation-reduction potential assay for measurement of oxidative stress: clinical utility in male factor infertility. Reprod Biomed Online. 2017;34(1):48–57.PubMedCrossRefGoogle Scholar
  52. 52.
    Agarwal A, Arafa M, Chandrakumar R, Majzoub A, AlSaid S, Elbardisi H. A multicenter study to evaluate oxidative stress by oxidation–reduction potential, a reliable and reproducible method. Andrology. 2017;5(5):939–45.PubMedCrossRefGoogle Scholar
  53. 53.
    Arafa M, Agarwal A, Al Said S, Majzoub A, Sharma R, Bjugstad K, AlRumaihi K, Elbardisi H. Semen quality and infertility status can be identified through measures of oxidation–reduction potential. Andrologia. 2017;50(2).CrossRefGoogle Scholar
  54. 54.
    Agarwal A, Wang SM. Clinical relevance of oxidation-reduction potential in the evaluation of male infertility. Urology. 2017;104:84–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol. 2014;12(1):45.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Agarwal A, Mulgund A, Sharma R, Sabanegh E. Mechanisms of oligozoospermia: an oxidative stress perspective. Syst Biol Reprod Med. 2014;60(4):206–16.PubMedCrossRefGoogle Scholar
  57. 57.
    Saleh RA, Agarwal A, Nelson DR, Nada EA, El-Tonsy MH, Alvarez JG, Thomas AJ, Sharma RK. Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril. 2002;78(2):313–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Mahfouz RZ, du Plessis SS, Aziz N, Sharma R, Sabanegh E, Agarwal A. Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertil Steril. 2010;93(3):814–21.PubMedCrossRefGoogle Scholar
  59. 59.
    Agarwal A, Mulgund A, Alshahrani S, Assidi M, Abuzenadah AM, Sharma R, Sabanegh E. Reactive oxygen species and sperm DNA damage in infertile men presenting with low level leukocytospermia. Reprod Biol Endocrinol. 2014;12(1):126.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zorn B, Vidmar G, Meden-Vrtovec H. Seminal reactive oxygen species as predictors of fertilization, embryo quality and pregnancy rates after conventional in vitro fertilization and intracytoplasmic sperm injection. Int J Androl. 2003;26(5):279–85.PubMedCrossRefGoogle Scholar
  61. 61.
    Imam SN, Shamsi MB, Kumar K, Deka D, Dada R. Idiopathic recurrent pregnancy loss: role of paternal factors; a pilot study. J Reprod Infertil. 2011;12(4):267.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Mahfouz R, Sharma R, Thiyagarajan A, Kale V, Gupta S, Sabanegh E, Agarwal A. Semen characteristics and sperm DNA fragmentation in infertile men with low and high levels of seminal reactive oxygen species. Fertil Steril. 2010;94(6):2141–6.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Homa ST, Vessey W, Perez-Miranda A, Riyait T, Agarwal A. Reactive oxygen species (ROS) in human semen: determination of a reference range. J Assist Reprod Genet. 2015;32(5):757–64.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Giulini S, Sblendorio V, Xella S, La Marca A, Palmieri B, Volpe A. Seminal plasma total antioxidant capacity and semen parameters in patients with varicocele. Reprod Biomed Online. 2009;18(5):617–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Showell MG, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2011;1(1).Google Scholar
  66. 66.
    Agarwal A, Sharma R, Roychoudhury S, Du Plessis S, Sabanegh E. MiOXSYS: a novel method of measuring oxidation reduction potential in semen and seminal plasma. Fertil Steril. 2016;106(3):566–73. e510.PubMedCrossRefGoogle Scholar
  67. 67.
    Barratt CL, Aitken RJ, Björndahl L, Carrell DT, de Boer P, Kvist U, Lewis SE, Perreault SD, Perry MJ, Ramos L. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications—a position report. Hum Reprod. 2010;25(4):824–38.PubMedCrossRefGoogle Scholar
  68. 68.
    Shamsi MB, Imam SN, Dada R. Sperm DNA integrity assays: diagnostic and prognostic challenges and implications in management of infertility. J Assist Reprod Genet. 2011;28(11):1073–85.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Cho C-L, Agarwal A. Role of sperm DNA fragmentation in male factor infertility: a systematic review. Arab Journal of Urology. 2017.Google Scholar
  70. 70.
    Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93(4):1027–36.PubMedCrossRefGoogle Scholar
  71. 71.
    Muratori M, Piomboni P, Baldi E, Filimberti E, Pecchioli P, Moretti E, Gambera L, Baccetti B, Biagiotti R, Forti G. Functional and ultrastructural features of DNA-fragmented human sperm. J Androl. 2000;21(6):903–12.PubMedGoogle Scholar
  72. 72.
    Enciso M, Alfarawati S, Wells D. Increased numbers of DNA-damaged spermatozoa in samples presenting an elevated rate of numerical chromosome abnormalities. Hum Reprod. 2013;28(6):1707–15.PubMedCrossRefGoogle Scholar
  73. 73.
    Smith TB, Dun MD, Smith ND, Curry BJ, Connaughton HS, Aitken RJ. The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. J Cell Sci. 2013;126(6):1488–97.PubMedCrossRefGoogle Scholar
  74. 74.
    Sharma R, Ahmad G, Esteves SC, Agarwal A. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: protocol, reference values, and quality control. J Assist Reprod Genet. 2016;33(2):291–300.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mitchell L, De Iuliis G, Aitken RJ. The TUNEL assay consistently underestimates DNA damage in human spermatozoa and is influenced by DNA compaction and cell vitality: development of an improved methodology. Int J Androl. 2011;34(1):2–13.PubMedCrossRefGoogle Scholar
  76. 76.
    Sharma RK, Sabanegh E, Mahfouz R, Gupta S, Thiyagarajan A, Agarwal A. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010;76(6):1380–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Lewis SE, Aitken RJ, Conner SJ, De Iuliis G, Evenson DP, Henkel R, Giwercman A, Gharagozloo P. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reprod Biomed Online. 2013;27(4):325–37.PubMedCrossRefGoogle Scholar
  78. 78.
    Baumgartner A, Cemeli E, Anderson D. The comet assay in male reproductive toxicology. Cell Biol Toxicol. 2009;25(1):81–98.PubMedCrossRefGoogle Scholar
  79. 79.
    Simon L, Carrell DT. Sperm DNA damage measured by comet assay. In: Spermatogenesis: Springer; 2013. p. 137–46.Google Scholar
  80. 80.
    Simon L, Lewis SE. Sperm DNA damage or progressive motility: which one is the better predictor of fertilization in vitro? Syst Biol Reprod Med. 2011;57(3):133–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Fernández JL, Muriel L, Goyanes V, Segrelles E, Gosálvez J, Enciso M, LaFromboise M, De Jonge C. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil Steril. 2005;84(4):833–42.PubMedCrossRefGoogle Scholar
  82. 82.
    Fernandez JL, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24(1):59–66.PubMedGoogle Scholar
  83. 83.
    Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, Meyer A, Nelson DR, Thomas AJ. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79:1597–605.PubMedCrossRefGoogle Scholar
  84. 84.
    Ajina T, Ammar O, Haouas Z, Sallem A, Ezzi L, Grissa I, Sakly W, Jlali A, Mehdi M. Assessment of human sperm DNA integrity using two cytochemical tests: Acridine orange test and toluidine blue assay. Andrologia. 2017;49(10).CrossRefGoogle Scholar
  85. 85.
    Manicardi G, Bianchi P, Pantano S, Azzoni P, Bizzaro D, Bianchi U, Sakkas D. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod. 1995;52(4):864–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Evenson D, Jost L. Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci. 2000;22(2–3):169–89.PubMedCrossRefGoogle Scholar
  87. 87.
    Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA®) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81(5):1289–95.PubMedCrossRefGoogle Scholar
  88. 88.
    Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;75(4):674–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Smith R, Kaune H, Parodi D, Madariaga M, Ríos R, Morales I, Castro A. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod. 2005;21(4):986–93.PubMedCrossRefGoogle Scholar
  90. 90.
    Blumer CG, Fariello RM, Restelli AE, Spaine DM, Bertolla RP, Cedenho AP. Sperm nuclear DNA fragmentation and mitochondrial activity in men with varicocele. Fertil Steril. 2008;90(5):1716–22.PubMedCrossRefGoogle Scholar
  91. 91.
    Cho C-L, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18(2):186.PubMedCrossRefGoogle Scholar
  92. 92.
    Novotny J, Aziz N, Rybar R, Brezinova J, Kopecka V, Filipcikova R, Reruchova M, Oborna I. Relationship between reactive oxygen species production in human semen and sperm DNA damage assessed by sperm chromatin structure assay. Biomed Pap Med Fac Univ Palacky Olomouc Repub. 2013;157(4):382–6.Google Scholar
  93. 93.
    Feijó CM, Esteves SC. Diagnostic accuracy of sperm chromatin dispersion test to evaluate sperm deoxyribonucleic acid damage in men with unexplained infertility. Fertil Steril. 2014;101(1):58–63. e53PubMedCrossRefGoogle Scholar
  94. 94.
    Carrell DT, Liu L, Peterson C, Jones K, Hatasaka H, Erickson L, Campbell B. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch Androl. 2003;49(1):49–55.PubMedCrossRefGoogle Scholar
  95. 95.
    Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol. 2016;5(6):935.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bansal AK, Bilaspuri G. Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int. 2010;2010.Google Scholar
  97. 97.
    Agarwal A, Cho C-L, Majzoub A, Esteves SC. The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility. Transl Androl Urol. 2017;6. (Suppl 4:S720.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Pizzol D, Bertoldo A, Foresta C. Male infertility: biomolecular aspects. Biomol Concepts. 2014;5(6):449–56.PubMedCrossRefGoogle Scholar
  99. 99.
    Samplaski MK, Agarwal A, Sharma R, Sabanegh E. New generation of diagnostic tests for infertility: review of specialized semen tests. Int J Urol. 2010;17(10):839–47.PubMedCrossRefGoogle Scholar
  100. 100.
    Esteves SC, Verza S, Sharma RK, Gosálvez J, Agarwal A. Role and significance of sperm function in men with unexplained infertility. In: Unexplained infertility. New York, NY: Springer; 2015. p. 91–119.CrossRefGoogle Scholar
  101. 101.
    Agarwal A, Gupta S, Sharma R. Acrosome reaction measurement. In: Andrological evaluation of male infertility. Switzerland: Springer; 2016. p. 143–6.CrossRefGoogle Scholar
  102. 102.
    Sigman M, Zini A. Semen analysis and sperm function assays: what do they mean? In: Seminars in reproductive medicine, vol. 02: Thieme Medical Publishers; 2009;27(2):115–23.Google Scholar
  103. 103.
    Oehninger S, Franken DR, Ombelet W. Sperm functional tests. Fertil Steril. 2014;102(6):1528–33.PubMedCrossRefGoogle Scholar
  104. 104.
    Nasr-Esfahani MH, Razavi S, Tavalaee M. Failed fertilization after ICSI and spermiogenic defects. Fertil Steril. 2008;89(4):892–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Garner DL, Thomas CA. Organelle-specific probe JC-1 identifies membrane potential differences in the mitochondrial function of bovine sperm. Mol Reprod Dev. 1999;53(2):222–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Perelman A, Wachtel C, Cohen M, Haupt S, Shapiro H, Tzur A. JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis. 2012;3(11):e430.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Vončina SM, Golob B, Ihan A, Kopitar AN, Kolbezen M, Zorn B. Sperm DNA fragmentation and mitochondrial membrane potential combined are better for predicting natural conception than standard sperm parameters. Fertil Steril. 2016;105(3):637–44. e631.CrossRefGoogle Scholar
  108. 108.
    Munuce M, Berta C, Pauluzzi F, Caille A. Relationship between antisperm antibodies, sperm movement, and semen quality. Urol Int. 2000;65(4):200–3.PubMedCrossRefGoogle Scholar
  109. 109.
    Pretorius E, Franken D, Shulman S, Gloeb J. Sperm cervical mucus contact test and immunobead test for sperm antibodies. Arch Androl. 1986;16(3):199–202.PubMedCrossRefGoogle Scholar
  110. 110.
    Vazquez-Levin MH, Marín-Briggiler CI, Veaute C. Antisperm antibodies: invaluable tools toward the identification of sperm proteins involved in fertilization. Am J Reprod Immunol. 2014;72(2):206–18.PubMedCrossRefGoogle Scholar
  111. 111.
    Jager S, Kremer J. A simple method of screening for antisperm antibodies in the human male. Detection of spermatozoal surface IgG with the direct mixed antiglobulin reaction carried out on untreated fresh human semen. Int J Fertil. 1978;23(1):12–21.PubMedGoogle Scholar
  112. 112.
    Ford W, Williains K, McLaughlin E, Harrison S, Ray B, Hull M. Immunology: the indirect immunobead test for seminal antisperm antibodies and fertilization rates at in-vitro fertifization. Hum Reprod. 1996;11(7):1418–22.PubMedCrossRefGoogle Scholar
  113. 113.
    WHO. WHO laboratory manual for the examination and processing of human semen. In: In. 5th ed. Switzerland: World Health Organization; 2010.Google Scholar
  114. 114.
    Agarwal A, Gupta S, Sharma R. Direct SpermMar antibody test. In: Andrological evaluation of male infertility. Switzerland: Springer; 2016. p. 147–53.CrossRefGoogle Scholar
  115. 115.
    Said TM, Agarwal A. Tests for sperm antibodies. In: Krause W, Naz R, (eds) Immune Infertility. Berlin, Heidelberg: Springer; 2017. pp. 155–64.Google Scholar
  116. 116.
    Bohring C, Krause W. Immune infertility: towards a better understanding of sperm (auto)-immunity: the value of proteomic analysis. Hum Reprod. 2003;18(5):915–24.PubMedCrossRefGoogle Scholar
  117. 117.
    Caprio G, Ferrara MA, Miccio L, Merola F, Memmolo P, Ferraro P, Coppola G. Holographic imaging of unlabelled sperm cells for semen analysis: a review. J Biophotonics. 2015;8(10):779–89.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tania R. Dias
    • 1
    • 2
    • 3
    • 4
  • Chak-Lam Cho
    • 5
  • Ashok Agarwal
    • 1
    Email author
  1. 1.American Center for Reproductive Medicine, Cleveland ClinicClevelandUSA
  2. 2.Universidade da Beira InteriorCovilhãPortugal
  3. 3.Department of Microscopy, Laboratory of Cell BiologyInstitute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of PortoPortoPortugal
  4. 4.LAQV/REQUIMTE - Laboratory of Bromatology and Hydrology, Faculty of PharmacyUniversity of PortoPortoPortugal
  5. 5.Department of SurgeryUnion HospitalHong KongChina

Personalised recommendations