Advertisement

Time-Lapse Microscopy for Embryo Culture and Selection

  • Andrey V. Dolinko
  • Catherine RacowskyEmail author
Chapter

Abstract

Elective single-embryo transfer has emerged as the most effective method for reducing the incidence of multiple births associated with assisted-reproductive technology (ART). Over the last several years, time-lapse microscopy (TLM) has been introduced as a tool in the ART laboratory to assist in choosing the most competent embryo. TLM allows for continuous noninvasive monitoring and evaluation of embryo morphology and morphokinetics (i.e., the precise timing of specific morphologic occurrences). To date, over 20 morphokinetic markers have been identified with the use of TLM, some of which have been shown to be highly predictive of blastocyst developmental potential. Others have been identified as potential markers for implantation potential and for aneuploidy. In this chapter, we provide an overview of TLM, introduce the capabilities of the technology, review the literature on the potential use of TLM to predict blastocyst formation, implantation, and live-birth potential, and discuss the effects of various factors on morphokinetic parameters. Based on the existing literature, we believe that TLM may evolve as an effective adjunct laboratory technique, although it is unlikely to supplant existing standards of care for embryo evaluation. However, more research needs to be performed to validate existing models and to prove the true value of TLM for embryo selection.

Keywords

Time-lapse microscopy Embryo culture Selection Single-embryo transfer Assisted-reproductive technology TLM Morphology Morphokinetics 

References

  1. 1.
    Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet (London, England). 1978;2(8085):366.CrossRefGoogle Scholar
  2. 2.
    Edwards RG, Steptoe PC, Purdy JM. Establishing full-term human pregnancies using cleaving embryos grown in vitro. Br J Obstet Gynaecol. 1980;87(9):737–56.CrossRefGoogle Scholar
  3. 3.
    Practice Committee of American Society for Reproductive M. Multiple gestation associated with infertility therapy: an American Society for Reproductive Medicine Practice Committee opinion. Fertil Steril. 2012;97(4):825–34.  https://doi.org/10.1016/j.fertnstert.2011.11.048.CrossRefGoogle Scholar
  4. 4.
    Practice Committee of the Society for Assisted Reproductive T, Practice Committee of American Society for Reproductive M. Elective single-embryo transfer. Fertil Steril. 2012;97(4):835–42.  https://doi.org/10.1016/j.fertnstert.2011.11.050.CrossRefGoogle Scholar
  5. 5.
    Wong C, Chen AA, Behr B, Shen S. Time-lapse microscopy and image analysis in basic and clinical embryo development research. Reprod Biomed Online. 2013;26(2):120–9.  https://doi.org/10.1016/j.rbmo.2012.11.003.CrossRefPubMedGoogle Scholar
  6. 6.
    Oh SJ, Gong SP, Lee ST, Lee EJ, Lim JM. Light intensity and wavelength during embryo manipulation are important factors for maintaining viability of preimplantation embryos in vitro. Fertil Steril. 2007;88(4 Suppl):1150–7.  https://doi.org/10.1016/j.fertnstert.2007.01.036.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Takenaka M, Horiuchi T, Yanagimachi R. Effects of light on development of mammalian zygotes. Proc Natl Acad Sci U S A. 2007;104(36):14289–93.  https://doi.org/10.1073/pnas.0706687104.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Conaghan J, Chen AA, Willman SP, Ivani K, Chenette PE, Boostanfar R, Baker VL, Adamson GD, Abusief ME, Gvakharia M, Loewke KE, Shen S. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril. 2013;100(2):412–9. e415.  https://doi.org/10.1016/j.fertnstert.2013.04.021.CrossRefPubMedGoogle Scholar
  9. 9.
    Edwards RG, Purdy JM, Steptoe PC, Walters DE. The growth of human preimplantation embryos in vitro. Am J Obstet Gynecol. 1981;141(4):408–16.CrossRefGoogle Scholar
  10. 10.
    Ceyhan ST, Jackson K, Racowsky C. Selecting the most competent embryo. In: Voorhis BJ, Schlegel PN, Racowsky C, Carrell DT, editors. Biennial review of infertility: Humana Press; 2009. p. 143–69.  https://doi.org/10.1007/978-1-60327-392-3_10.CrossRefGoogle Scholar
  11. 11.
    Racowsky C, Ohno-Machado L, Kim J, Biggers JD. Is there an advantage in scoring early embryos on more than one day? Hum Reprod. 2009;24(9):2104–13.  https://doi.org/10.1093/humrep/dep198.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Herrero J, Meseguer M. Selection of high potential embryos using time-lapse imaging: the era of morphokinetics. Fertil Steril. 2013;99(4):1030–4.  https://doi.org/10.1016/j.fertnstert.2013.01.089.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Swain JE. Could time-lapse embryo imaging reduce the need for biopsy and PGS? J Assist Reprod Genet. 2013;30(8):1081–90.  https://doi.org/10.1007/s10815-013-0048-4.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sjoblom P, Menezes J, Cummins L, Mathiyalagan B, Costello MF. Prediction of embryo developmental potential and pregnancy based on early stage morphological characteristics. Fertil Steril. 2006;86(4):848–61.  https://doi.org/10.1016/j.fertnstert.2006.03.040.CrossRefPubMedGoogle Scholar
  15. 15.
    Ergin EG, Caliskan E, Yalcinkaya E, Oztel Z, Cokelez K, Ozay A, Ozornek HM. Frequency of embryo multinucleation detected by time-lapse system and its impact on pregnancy outcome. Fertil Steril. 2014;102(4):1029–33.e1021.  https://doi.org/10.1016/j.fertnstert.2014.06.030.CrossRefPubMedGoogle Scholar
  16. 16.
    Medicine ASIR, Embryology ESIG. Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Reprod Biomed Online. 2011;22(6):632–46.  https://doi.org/10.1016/j.rbmo.2011.02.001.CrossRefGoogle Scholar
  17. 17.
    Balakier H, Sojecki A, Motamedi G, Librach C. Impact of multinucleated blastomeres on embryo developmental competence, morphokinetics, and aneuploidy. Fertil Steril. 2016;106(3):608–14.e602.  https://doi.org/10.1016/j.fertnstert.2016.04.041.CrossRefPubMedGoogle Scholar
  18. 18.
    Aguilar J, Rubio I, Munoz E, Pellicer A, Meseguer M. Study of nucleation status in the second cell cycle of human embryo and its impact on implantation rate. Fertil Steril. 2016;106(2):291–9.e292.  https://doi.org/10.1016/j.fertnstert.2016.03.036.CrossRefPubMedGoogle Scholar
  19. 19.
    Mizobe Y, Oya N, Iwakiri R, Yoshida N, Sato Y, Miyoshi K, Tokunaga M, Ezono Y. Effects of early cleavage patterns of human embryos on subsequent in vitro development and implantation. Fertil Steril. 2016;106(2):348–53.e342.  https://doi.org/10.1016/j.fertnstert.2016.04.020.CrossRefPubMedGoogle Scholar
  20. 20.
    Azzarello A, Hoest T, Hay-Schmidt A, Mikkelsen AL. Live birth rate and number of blastomeres on day 2 transfer. J Assist Reprod Genet. 2016;33(10):1337–42.  https://doi.org/10.1007/s10815-016-0737-x.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Almagor M, Or Y, Fieldust S, Shoham Z. Irregular cleavage of early preimplantation human embryos: characteristics of patients and pregnancy outcomes. J Assist Reprod Genet. 2015;32(12):1811–5.  https://doi.org/10.1007/s10815-015-0591-2.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang ST, Shi JX, Gong F, Zhang SP, Lu CF, Tan K, Leng LZ, Hao M, He H, Gu YF, Lu GX, Lin G. Cleavage pattern predicts developmental potential of day 3 human embryos produced by IVF. Reprod Biomed Online. 2015;30(6):625–34.  https://doi.org/10.1016/j.rbmo.2015.02.008.CrossRefPubMedGoogle Scholar
  23. 23.
    Wang S, Ding L, Zhao X, Zhang N, Hu Y, Sun H. Embryo selection for single embryo transfer on day 3 based on combination of cleavage patterns and timing parameters in in vitro fertilization patients. J Reprod Med. 2016;61(5–6):254–62.PubMedGoogle Scholar
  24. 24.
    Athayde Wirka K, Chen AA, Conaghan J, Ivani K, Gvakharia M, Behr B, Suraj V, Tan L, Shen S. Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development. Fertil Steril. 2014;101(6):1637–48. e1631–1635.  https://doi.org/10.1016/j.fertnstert.2014.02.050.CrossRefGoogle Scholar
  25. 25.
    Liu Y, Chapple V, Feenan K, Roberts P, Matson P. Clinical significance of intercellular contact at the four-cell stage of human embryos, and the use of abnormal cleavage patterns to identify embryos with low implantation potential: a time-lapse study. Fertil Steril. 2015;103(6):1485–91.e1481.  https://doi.org/10.1016/j.fertnstert.2015.03.017.CrossRefPubMedGoogle Scholar
  26. 26.
    Kaser DJ, Racowsky C. Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod Update. 2014;20(5):617–31.  https://doi.org/10.1093/humupd/dmu023.CrossRefPubMedGoogle Scholar
  27. 27.
    Ciray HN, Aksoy T, Goktas C, Ozturk B, Bahceci M. Time-lapse evaluation of human embryo development in single versus sequential culture media--a sibling oocyte study. J Assist Reprod Genet. 2012;29(9):891–900.  https://doi.org/10.1007/s10815-012-9818-7.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Blake DA, Farquhar CM, Johnson N, Proctor M. Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Send to Cochrane Database Syst Rev. 2007;(4):Cd002118.  https://doi.org/10.1002/14651858.CD002118.pub3.
  29. 29.
    De Vos A, Van Landuyt L, Santos-Ribeiro S, Camus M, Van de Velde H, Tournaye H, Verheyen G. Cumulative live birth rates after fresh and vitrified cleavage-stage versus blastocyst-stage embryo transfer in the first treatment cycle. Hum Reprod. 2016;31(11):2442–9.  https://doi.org/10.1093/humrep/dew219.CrossRefPubMedGoogle Scholar
  30. 30.
    Martins WP, Nastri CO, Rienzi L, van der Poel SZ, Gracia C, Racowsky C. Blastocyst versus cleavage stage embryo transfer: a systematic review and meta-analysis of the reproductive outcomes. Ultrasound Obstet Gynecol. 2016;49:583.  https://doi.org/10.1002/uog.17327.CrossRefGoogle Scholar
  31. 31.
    El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril. 2013;99(3):632–41.  https://doi.org/10.1016/j.fertnstert.2012.12.044.CrossRefPubMedGoogle Scholar
  32. 32.
    Glujovsky D, Blake D, Farquhar C, Bardach A. Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev. 2012;7:CD002118.  https://doi.org/10.1002/14651858.CD002118.pub4.CrossRefGoogle Scholar
  33. 33.
    Kawachiya S, Bodri D, Shimada N, Kato K, Takehara Y, Kato O. Blastocyst culture is associated with an elevated incidence of monozygotic twinning after single embryo transfer. Fertil Steril. 2011;95(6):2140–2.  https://doi.org/10.1016/j.fertnstert.2010.12.018.CrossRefPubMedGoogle Scholar
  34. 34.
    Skiadas CC, Missmer SA, Benson CB, Gee RE, Racowsky C. Risk factors associated with pregnancies containing a monochorionic pair following assisted reproductive technologies. Hum Reprod. 2008;23(6):1366–71.  https://doi.org/10.1093/humrep/den045.CrossRefPubMedGoogle Scholar
  35. 35.
    Dar S, Librach CL, Gunby J, Bissonnette F, Cowan L. Increased risk of preterm birth in singleton pregnancies after blastocyst versus day 3 embryo transfer: Canadian ART register (CARTR) analysis. Hum Reprod. 2013;28(4):924–8.  https://doi.org/10.1093/humrep/des448.CrossRefPubMedGoogle Scholar
  36. 36.
    Kallen B, Finnstrom O, Lindam A, Nilsson E, Nygren KG, Olausson PO. Blastocyst versus cleavage stage transfer in in vitro fertilization: differences in neonatal outcome? Fertil Steril. 2010;94(5):1680–3.  https://doi.org/10.1016/j.fertnstert.2009.12.027.CrossRefPubMedGoogle Scholar
  37. 37.
    Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM, Reijo Pera RA. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28(10):1115–21.  https://doi.org/10.1038/nbt.1686.CrossRefGoogle Scholar
  38. 38.
    Hashimoto S, Kato N, Saeki K, Morimoto Y. Selection of high-potential embryos by culture in poly(dimethylsiloxane) microwells and time-lapse imaging. Fertil Steril. 2012;97(2):332–7.  https://doi.org/10.1016/j.fertnstert.2011.11.042.CrossRefPubMedGoogle Scholar
  39. 39.
    Dal Canto M, Coticchio G, Mignini Renzini M, De Ponti E, Novara PV, Brambillasca F, Comi R, Fadini R. Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation. Reprod Biomed Online. 2012;25(5):474–80.  https://doi.org/10.1016/j.rbmo.2012.07.016.CrossRefPubMedGoogle Scholar
  40. 40.
    Desai N, Ploskonka S, Goodman L, Austin C, Goldberg J, Falcone T. Analysis of embryo morphokinetics, multinucleation and cleavage anomalies using continuous time-lapse monitoring in blastocyst transfer cycles. Reprod Biol Endocrinol. 2014;12(1):54.CrossRefGoogle Scholar
  41. 41.
    Cruz M, Garrido N, Herrero J, Perez-Cano I, Munoz M, Meseguer M. Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reprod Biomed Online. 2012;25(4):371–81.  https://doi.org/10.1016/j.rbmo.2012.06.017.CrossRefPubMedGoogle Scholar
  42. 42.
    Kirkegaard K, Kesmodel US, Hindkjaer JJ, Ingerslev HJ. Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a prospective cohort study. Hum Reprod. 2013;28(10):2643–51.  https://doi.org/10.1093/humrep/det300.CrossRefPubMedGoogle Scholar
  43. 43.
    Cetinkaya M, Pirkevi C, Yelke H, Colakoglu YK, Atayurt Z, Kahraman S. Relative kinetic expressions defining cleavage synchronicity are better predictors of blastocyst formation and quality than absolute time points. J Assist Reprod Genet. 2015;32(1):27–35.  https://doi.org/10.1007/s10815-014-0341-x.CrossRefPubMedGoogle Scholar
  44. 44.
    VerMilyea MD, Tan L, Anthony JT, Conaghan J, Ivani K, Gvakharia M, Boostanfar R, Baker VL, Suraj V, Chen AA, Mainigi M, Coutifaris C, Shen S. Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-centre study. Reprod Biomed Online. 2014;29(6):729–36.  https://doi.org/10.1016/j.rbmo.2014.09.005.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Diamond MP, Suraj V, Behnke EJ, Yang X, Angle MJ, Lambe-Steinmiller JC, Watterson R, Athayde Wirka K, Chen AA, Shen S. Using the Eeva Test adjunctively to traditional day 3 morphology is informative for consistent embryo assessment within a panel of embryologists with diverse experience. J Assist Reprod Genet. 2015;32(1):61–8.  https://doi.org/10.1007/s10815-014-0366-1.CrossRefPubMedGoogle Scholar
  46. 46.
    Aparicio-Ruiz B, Basile N, Perez Albala S, Bronet F, Remohi J, Meseguer M. Automatic time-lapse instrument is superior to single-point morphology observation for selecting viable embryos: retrospective study in oocyte donation. Fertil Steril. 2016;106:1379.  https://doi.org/10.1016/j.fertnstert.2016.07.1117.CrossRefPubMedGoogle Scholar
  47. 47.
    Milewski R, Kuc P, Kuczynska A, Stankiewicz B, Lukaszuk K, Kuczynski W. A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development. J Assist Reprod Genet. 2015;32(4):571–9.  https://doi.org/10.1007/s10815-015-0440-3.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Motato Y, de los Santos MJ, Escriba MJ, Ruiz BA, Remohi J, Meseguer M. Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system. Fertil Steril. 2016;105(2):376–84.e379.  https://doi.org/10.1016/j.fertnstert.2015.11.001.CrossRefPubMedGoogle Scholar
  49. 49.
    Petersen BM, Boel M, Montag M, Gardner DK. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on day 3. Hum Reprod. 2016;31(10):2231–44.  https://doi.org/10.1093/humrep/dew188.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Storr A, Venetis CA, Cooke S, Susetio D, Kilani S, Ledger W. Morphokinetic parameters using time-lapse technology and day 5 embryo quality: a prospective cohort study. J Assist Reprod Genet. 2015;32(7):1151–60.  https://doi.org/10.1007/s10815-015-0534-y.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online. 2008;17(3):385–91.CrossRefGoogle Scholar
  52. 52.
    Meseguer M, Herrero J, Tejera A, Hilligsoe KM, Ramsing NB, Remohi J. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26(10):2658–71.  https://doi.org/10.1093/humrep/der256.CrossRefPubMedGoogle Scholar
  53. 53.
    Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98(6):1481–9. e1410.  https://doi.org/10.1016/j.fertnstert.2012.08.016.CrossRefPubMedGoogle Scholar
  54. 54.
    Rubio I, Galan A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, Meseguer M. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102:1287.  https://doi.org/10.1016/j.fertnstert.2014.07.738.CrossRefGoogle Scholar
  55. 55.
    Pérez S, Rubio I, Aparicio B, Beltrán D, García-Láez V, Meseguer M. Prospective validation of a time-lapse based algorithm for embryo selection. Fertil Steril. 2014;102(3):e322.CrossRefGoogle Scholar
  56. 56.
    Basile N, Vime P, Florensa M, Aparicio Ruiz B, Garcia Velasco JA, Remohi J, Meseguer M. The use of morphokinetics as a predictor of implantation: a multicentric study to define and validate an algorithm for embryo selection. Hum Reprod. 2015;30(2):276–83.  https://doi.org/10.1093/humrep/deu331.CrossRefPubMedGoogle Scholar
  57. 57.
    Yalcinkaya E, Ergin EG, Caliskan E, Oztel Z, Ozay A, Ozornek H. Reproducibility of a time-lapse embryo selection model based on morphokinetic data in a sequential culture media setting. J Turk Ger Gynecol Assoc. 2014;15(3):156–60.  https://doi.org/10.5152/jtgga.2014.13068.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Freour T, Le Fleuter N, Lammers J, Splingart C, Reignier A, Barriere P. External validation of a time-lapse prediction model. Fertil Steril. 2015;103(4):917–22.  https://doi.org/10.1016/j.fertnstert.2014.12.111.CrossRefPubMedGoogle Scholar
  59. 59.
    Kahraman S, Çetinkaya M, Pirkevi C, Yelke H, Kumtepe Y. Comparison of blastocyst development and cycle outcome in patients with eSET using either conventional or time lapse incubators. A prospective study of good prognosis patients. J Reprod Biotechnol Fertil. 2012;3(2):55–61.  https://doi.org/10.1177/205891581200300204.CrossRefGoogle Scholar
  60. 60.
    Kirkegaard K, Campbell A, Agerholm I, Bentin-Ley U, Gabrielsen A, Kirk J, Sayed S, Ingerslev HJ. Limitations of a time-lapse blastocyst prediction model: a large multicentre outcome analysis. Reprod Biomed Online. 2014;29(2):156–8.  https://doi.org/10.1016/j.rbmo.2014.04.011.CrossRefPubMedGoogle Scholar
  61. 61.
    Adamson GD, Abusief ME, Palao L, Witmer J, Palao LM, Gvakharia M. Improved implantation rates of day 3 embryo transfers with the use of an automated time-lapse-enabled test to aid in embryo selection. Fertil Steril. 2016;105(2):369–75.e366.  https://doi.org/10.1016/j.fertnstert.2015.10.030.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kieslinger DC, De Gheselle S, Lambalk CB, De Sutter P, Kostelijk EH, Twisk JW, van Rijswijk J, Van den Abbeel E, Vergouw CG. Embryo selection using time-lapse analysis (early embryo viability assessment) in conjunction with standard morphology: a prospective two-center pilot study. Hum Reprod. 2016;31:2450.  https://doi.org/10.1093/humrep/dew207.CrossRefPubMedGoogle Scholar
  63. 63.
    Kaser DJ, Bormann CL, Missmer SA, Farland LV, Ginsburg ES, Racowsky C. A pilot randomized controlled trial of Day 3 single embryo transfer with adjunctive time-lapse selection versus Day 5 single embryo transfer with or without adjunctive time-lapse selection. Hum Reprod. 2017;32(8):1598–603.  https://doi.org/10.1093/humrep/dex231.CrossRefGoogle Scholar
  64. 64.
    Racowsky C, Kovacs P, Martins WP. A critical appraisal of time-lapse imaging for embryo selection: where are we and where do we need to go? J Assist Reprod Genet. 2015;32(7):1025–30.  https://doi.org/10.1007/s10815-015-0510-6.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Liu Y, Chapple V, Feenan K, Roberts P, Matson P. Time-lapse deselection model for human day 3 in vitro fertilization embryos: the combination of qualitative and quantitative measures of embryo growth. Fertil Steril. 2016;105(3):656–62.e651.  https://doi.org/10.1016/j.fertnstert.2015.11.003.CrossRefGoogle Scholar
  66. 66.
    Milewski R, Milewska AJ, Kuczynska A, Stankiewicz B, Kuczynski W. Do morphokinetic data sets inform pregnancy potential? J Assist Reprod Genet. 2016;33(3):357–65.  https://doi.org/10.1007/s10815-016-0649-9.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Goodman LR, Goldberg J, Falcone T, Austin C, Desai N. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertil Steril. 2016;105(2):275–85.e210.  https://doi.org/10.1016/j.fertnstert.2015.10.013.CrossRefPubMedGoogle Scholar
  68. 68.
    Ahlstrom A, Park H, Bergh C, Selleskog U, Lundin K. Conventional morphology performs better than morphokinetics for prediction of live birth after day 2 transfer. Reprod Biomed Online. 2016;33(1):61–70.  https://doi.org/10.1016/j.rbmo.2016.03.008.CrossRefPubMedGoogle Scholar
  69. 69.
    Siristatidis C, Komitopoulou MA, Makris A, Sialakouma A, Botzaki M, Mastorakos G, Salamalekis G, Bettocchi S, Palmer GA. Morphokinetic parameters of early embryo development via time lapse monitoring and their effect on embryo selection and ICSI outcomes: a prospective cohort study. J Assist Reprod Genet. 2015;32(4):563–70.  https://doi.org/10.1007/s10815-015-0436-z.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, Scott RT Jr. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101(3):656–63.e651.  https://doi.org/10.1016/j.fertnstert.2013.11.004.CrossRefPubMedGoogle Scholar
  71. 71.
    Melzer KE, McCaffrey C, Adler A, Colls P, Munne S, Grifo JA. Developmental morphology and continuous time-lapse microscopy (TLM) of human embryos: can we predict euploidy? Fertil Steril. 2012;98(3):S136.  https://doi.org/10.1016/j.fertnstert.2012.07.501.CrossRefGoogle Scholar
  72. 72.
    Dogan S, Li F, Urich M, Fakih M, Shamma N, Abuzeid M, Khan I. Can we rely on only morphokinetic parameters to detect embryo aneuploidy? Fertil Steril. 2014;102(3):e177–8.CrossRefGoogle Scholar
  73. 73.
    Patel DV, Shah PB, Kotdawala AP, Herrero J, Rubio I, Banker MR. Morphokinetic behavior of euploid and aneuploid embryos analyzed by time-lapse in embryoscope. Send to J Hum Reprod Sci. 2016;9(2):112–8.  https://doi.org/10.4103/0974-1208.183511.CrossRefGoogle Scholar
  74. 74.
    Rienzi L, Capalbo A, Stoppa M, Romano S, Maggiulli R, Albricci L, Scarica C, Farcomeni A, Vajta G, Ubaldi FM. No evidence of association between blastocyst aneuploidy and morphokinetic assessment in a selected population of poor-prognosis patients: a longitudinal cohort study. Reprod Biomed Online. 2015;30(1):57–66.  https://doi.org/10.1016/j.rbmo.2014.09.012.CrossRefPubMedGoogle Scholar
  75. 75.
    Yang Z, Zhang J, Salem SA, Liu X, Kuang Y, Salem RD, Liu J. Selection of competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing for patients undergoing preimplantation genetic screening: a prospective study with sibling oocytes. BMC Med Genet. 2014;7:38.  https://doi.org/10.1186/1755-8794-7-38.CrossRefGoogle Scholar
  76. 76.
    Friedman BE, Chavez SL, Behr B, Lathi RB, Baker VL, Reijo Pera RA. Non-invasive imaging for the detection of human embryonic aneuploidy at the blastocyst stage. Fertil Steril. 2012;98(3):S38.  https://doi.org/10.1016/j.fertnstert.2012.07.141.CrossRefGoogle Scholar
  77. 77.
    Chavez SL, Loewke KE, Han J, Moussavi F, Colls P, Munne S, Behr B, Reijo Pera RA. Dynamic blastomere behaviour reflects human embryo ploidy by the four-cell stage. Nat Commun. 2012;3:1251.  https://doi.org/10.1038/ncomms2249.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Hickman CF. Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod Biomed Online. 2013a;26(5):477–85.  https://doi.org/10.1016/j.rbmo.2013.02.006.CrossRefPubMedGoogle Scholar
  79. 79.
    Minasi MG, Colasante A, Riccio T, Ruberti A, Casciani V, Scarselli F, Spinella F, Fiorentino F, Varricchio MT, Greco E. Correlation between aneuploidy, standard morphology evaluation and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series study. Hum Reprod. 2016;31(10):2245–54.  https://doi.org/10.1093/humrep/dew183.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Basile N, Nogales Mdel C, Bronet F, Florensa M, Riqueiros M, Rodrigo L, Garcia-Velasco J, Meseguer M. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril. 2014;101(3):699–704.  https://doi.org/10.1016/j.fertnstert.2013.12.005.CrossRefGoogle Scholar
  81. 81.
    Chawla M, Fakih M, Shunnar A, Bayram A, Hellani A, Perumal V, Divakaran J, Budak E. Morphokinetic analysis of cleavage stage embryos and its relationship to aneuploidy in a retrospective time-lapse imaging study. J Assist Reprod Genet. 2015;32(1):69–75.  https://doi.org/10.1007/s10815-014-0372-3.CrossRefPubMedGoogle Scholar
  82. 82.
    Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Thornton S. Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod Biomed Online. 2013b;27(2):140–6.  https://doi.org/10.1016/j.rbmo.2013.04.013.CrossRefPubMedGoogle Scholar
  83. 83.
    Kramer YG, Kofinas JD, Melzer K, Noyes N, McCaffrey C, Buldo-Licciardi J, McCulloh DH, Grifo JA. Assessing morphokinetic parameters via time lapse microscopy (TLM) to predict euploidy: are aneuploidy risk classification models universal? J Assist Reprod Genet. 2014;31(9):1231–42.  https://doi.org/10.1007/s10815-014-0285-1.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Bronet F, Nogales MC, Martinez E, Ariza M, Rubio C, Garcia-Velasco JA, Meseguer M. Is there a relationship between time-lapse parameters and embryo sex? Fertil Steril. 2015;103(2):396–401.e392.  https://doi.org/10.1016/j.fertnstert.2014.10.050.CrossRefPubMedGoogle Scholar
  85. 85.
    Serdarogullari M, Findikli N, Goktas C, Sahin O, Ulug U, Yagmur E, Bahceci M. Comparison of gender-specific human embryo development characteristics by time-lapse technology. Reprod Biomed Online. 2014;29(2):193–9.  https://doi.org/10.1016/j.rbmo.2014.03.026.CrossRefPubMedGoogle Scholar
  86. 86.
    Bodri D, Kawachiya S, Sugimoto T, Yao Serna J, Kato R, Matsumoto T. Time-lapse variables and embryo gender: a retrospective analysis of 81 live births obtained following minimal stimulation and single embryo transfer. J Assist Reprod Genet. 2016;33(5):589–96.  https://doi.org/10.1007/s10815-016-0678-4.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Hardarson T, Bungum M, Conaghan J, Meintjes M, Chantilis SJ, Molnar L, Gunnarsson K, Wikland M. Noninferiority, randomized, controlled trial comparing embryo development using media developed for sequential or undisturbed culture in a time-lapse setup. Fertil Steril. 2015;104(6):1452–9.e1451–1454.  https://doi.org/10.1016/j.fertnstert.2015.08.037.CrossRefPubMedGoogle Scholar
  88. 88.
    Costa-Borges N, Belles M, Meseguer M, Galliano D, Ballesteros A, Calderon G. Blastocyst development in single medium with or without renewal on day 3: a prospective cohort study on sibling donor oocytes in a time-lapse incubator. Fertil Steril. 2016;105(3):707–13.  https://doi.org/10.1016/j.fertnstert.2015.11.038.CrossRefPubMedGoogle Scholar
  89. 89.
    Cruz M, Garrido N, Gadea B, Munoz M, Perez-Cano I, Meseguer M. Oocyte insemination techniques are related to alterations of embryo developmental timing in an oocyte donation model. Reprod Biomed Online. 2013;27(4):367–75.  https://doi.org/10.1016/j.rbmo.2013.06.017.CrossRefPubMedGoogle Scholar
  90. 90.
    Bodri D, Sugimoto T, Serna JY, Kondo M, Kato R, Kawachiya S, Matsumoto T. Influence of different oocyte insemination techniques on early and late morphokinetic parameters: retrospective analysis of 500 time-lapse monitored blastocysts. Fertil Steril. 2015;104(5):1175–81.e1171–1172.  https://doi.org/10.1016/j.fertnstert.2015.07.1164.CrossRefPubMedGoogle Scholar
  91. 91.
    De Vos A, Staessen C, De Rycke M, Verpoest W, Haentjens P, Devroey P, Liebaers I, Van de Velde H. Impact of cleavage-stage embryo biopsy in view of PGD on human blastocyst implantation: a prospective cohort of single embryo transfers. Hum Reprod. 2009;24(12):2988–96.  https://doi.org/10.1093/humrep/dep251.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Goossens V, De Rycke M, De Vos A, Staessen C, Michiels A, Verpoest W, Van Steirteghem A, Bertrand C, Liebaers I, Devroey P, Sermon K. Diagnostic efficiency, embryonic development and clinical outcome after the biopsy of one or two blastomeres for preimplantation genetic diagnosis. Hum Reprod. 2008;23(3):481–92.  https://doi.org/10.1093/humrep/dem327.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Human embryonic development after blastomere removal: a time-lapse analysis. Hum Reprod. 2012;27(1):97–105.  https://doi.org/10.1093/humrep/der382.CrossRefPubMedGoogle Scholar
  94. 94.
    Bar-El L, Kalma Y, Malcov M, Schwartz T, Raviv S, Cohen T, Amir H, Cohen Y, Reches A, Amit A, Ben-Yosef D. Blastomere biopsy for PGD delays embryo compaction and blastulation: a time-lapse microscopic analysis. J Assist Reprod Genet. 2016;33:1449.  https://doi.org/10.1007/s10815-016-0813-2.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Aragonés M, Basile N, Pareja S, Cobo A, Bronet F, Meseguer M. The source of oocytes, fresh or vitrified, does not affect implantation potential based on kinetic markers. FertilSteril. 2014;102(3):e72.Google Scholar
  96. 96.
    De Munck N, Petrussa L, Verheyen G, Staessen C, Vandeskelde Y, Sterckx J, Bocken G, Jacobs K, Stoop D, De Rycke M, Van de Velde H. Chromosomal meiotic segregation, embryonic developmental kinetics and DNA (hydroxy)methylation analysis consolidate the safety of human oocyte vitrification. Mol Hum Reprod. 2015;21(6):535–44.  https://doi.org/10.1093/molehr/gav013.CrossRefPubMedGoogle Scholar
  97. 97.
    Munoz M, Cruz M, Humaidan P, Garrido N, Perez-Cano I, Meseguer M. Dose of recombinant FSH and oestradiol concentration on day of HCG affect embryo development kinetics. Reprod Biomed Online. 2012;25(4):382–9.  https://doi.org/10.1016/j.rbmo.2012.06.016.CrossRefPubMedGoogle Scholar
  98. 98.
    Munoz M, Cruz M, Humaidan P, Garrido N, Perez-Cano I, Meseguer M. The type of GnRH analogue used during controlled ovarian stimulation influences early embryo developmental kinetics: a time-lapse study. Eur J Obstet Gynecol Reprod Biol. 2013;168(2):167–72.  https://doi.org/10.1016/j.ejogrb.2012.12.038.CrossRefPubMedGoogle Scholar
  99. 99.
    Gurbuz AS, Gode F, Uzman MS, Ince B, Kaya M, Ozcimen N, Ozcimen EE, Acar A. GnRH agonist triggering affects the kinetics of embryo development: a comparative study. J Ovarian Res. 2016;9:22.  https://doi.org/10.1186/s13048-016-0229-8.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Watcharaseranee N, Ploskonka S, Goldberg J, Falcone T, Desai N. Does advancing maternal age affect morphokinetic parameters during embryo development? Fertil Steril. 2014;102(3):e213–4.CrossRefGoogle Scholar
  101. 101.
    Bellver J, Mifsud A, Grau N, Privitera L, Meseguer M. Similar morphokinetic patterns in embryos derived from obese and normoweight infertile women: a time-lapse study. Hum Reprod. 2013;28(3):794–800.  https://doi.org/10.1093/humrep/des438.CrossRefPubMedGoogle Scholar
  102. 102.
    Shah DK, Missmer SA, Berry KF, Racowsky C, Ginsburg ES. Effect of obesity on oocyte and embryo quality in women undergoing in vitro fertilization. Obstet Gynecol. 2011;118(1):63–70.  https://doi.org/10.1097/AOG.0b013e31821fd360.CrossRefPubMedGoogle Scholar
  103. 103.
    Leary C, Leese HJ, Sturmey RG. Human embryos from overweight and obese women display phenotypic and metabolic abnormalities. Hum Reprod. 2015;30(1):122–32.  https://doi.org/10.1093/humrep/deu276.CrossRefPubMedGoogle Scholar
  104. 104.
    Wissing ML, Bjerge MR, Olesen AI, Hoest T, Mikkelsen AL. Impact of PCOS on early embryo cleavage kinetics. Reprod Biomed Online. 2014;28(4):508–14.  https://doi.org/10.1016/j.rbmo.2013.11.017.CrossRefPubMedGoogle Scholar
  105. 105.
    Sundvall L, Kirkegaard K, Ingerslev HJ, Knudsen UB. Unaltered timing of embryo development in women with polycystic ovarian syndrome (PCOS): a time-lapse study. J Assist Reprod Genet. 2015;32(7):1031–42.  https://doi.org/10.1007/s10815-015-0488-0.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Women and Infants Hospital, Obstetrics and GynecologyProvidenceUSA
  2. 2.Brigham and Women’s Hospital, Obstetrics, Genecology, and Reproductive BiologyBostonUSA

Personalised recommendations