Microfluidics for Gamete Manipulation and Embryo Culture

  • Peng Yuan
  • Liying Yan
  • Gary D. SmithEmail author


Microfluidics is an emerging highly interdisciplinary field that holds immense potential for scientific discovery. With the utilizing of microfluidics, knowledge can be obtained in basic gamete/embryo developmental biology as well as expanding our understanding in specialized areas, such as assisted reproduction. This paper reviews the technology of microfluidics and discusses applications for assisted reproduction technology. Development of an integrated microfluidic platform for assisted reproduction, which can manipulate gametes, embryos, their culture environment, detect the metabolome, genome, transcriptome, proteome, methylome of the embryos/gamete, could have a dramatic impact on basic understanding of embryo physiology as well as provide significant improvements in current assisted reproductive technologies and fertility preservation.


Microfluidics Gamete manipulation In vitro insemination Embryo culture Embryo analysis Cryopreservation 


  1. 1.
    Zegers HF, Adamson GD. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology; 2009.Google Scholar
  2. 2.
    Mohan M, Hurst AG, Malayer JR. Global gene expression analysis comparing bovine blastocysts flushed on day 7 or produced in vitro. Mol Reprod Dev. 2004;68(3):288–98.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Totey SM, Pawshe CH, Singh GP. In vitro maturation and fertilization of buffalo oocytes (Bubalusbubalis): effects of media, hormones and sera. Theriogenology. 1993;39(5):1153–71.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Wheeler MB, et al. Microfluidic technology for in vitro embryo production. In: Microtechnologies in medicine & biology 2nd annual international IEEE-EMB special topic conference on. 2002: IEEE.Google Scholar
  5. 5.
    Wheeler MB, Clark SG, Beebe DJ. Developments in in vitro technologies for swine embryo production. Reprod Fertil Dev. 2003;16(2):15–25.CrossRefGoogle Scholar
  6. 6.
    Audibert C, Glass D. A global perspective on assisted reproductive technology fertility treatment: an 8-country fertility specialist survey. Reprod Biol Endocrinol. 2015;13(1):133.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Fuhr G, Shirley SG. Cell handling and characterization using micron and submicron electrode arrays: state of the art and perspectives of semiconductor microtools. J Micromech Microeng. 1995;5(2):77.CrossRefGoogle Scholar
  8. 8.
    Washizu M. Electrostatic manipulation of biological objects. J Electrost. 1990;25(1):109–23.CrossRefGoogle Scholar
  9. 9.
    Smith GD, Takayama S. Gamete and embryo isolation and culture with microfluidics. Theriogenology. 2007;68:S190–5.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Smith GD, Bormann C, Takayama S. Microfluidics for gamete manipulation and embryo culture. In: Practical manual of in vitro fertilization. New York: Springer; 2012. p. 171–81.CrossRefGoogle Scholar
  11. 11.
    Wheeler MB, Walters EM, Beebe DJ. Toward culture of single gametes: the development of microfluidic platforms for assisted reproduction. Theriogenology. 2007;68:S178–89.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lai D, et al. Microfluidics for assisted reproductive technologies. Microfluidics Med Appl. 2014;36:131.CrossRefGoogle Scholar
  13. 13.
    Cooper TG, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16:231–45. Scholar
  14. 14.
    Cho BS, et al. Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem. 2003;75(7):1671–5.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kricka LJ, et al. Micromachined analytical devices: microchips for semen testing. J Pharm Biomed Anal. 1997;15(9–10):1443–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kricka LJ, et al. Applications of a microfabricated device for evaluating sperm function. Clin Chem. 1993;39(9):1944–7.PubMedPubMedCentralGoogle Scholar
  17. 17.
    McCormack MC, McCallum S, Behr B. A novel microfluidic device for male subfertility screening. J Urol. 2006;175(6):2223–7.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Segerink LI, et al. On-chip determination of spermatozoa concentration using electrical impedance measurements. Lab Chip. 2010;10(8):1018–24.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Chen C, et al. Sperm quality assessment via separation and sedimentation in a microfluidic device. Analyst. 2013;138(17):4967–74.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Gou H, et al. Label-free electrical discrimination of cells at normal, apoptotic and necrotic status with a microfluidic device. J Chromatogr A. 2011;1218(33):5725–9.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    De Jonge C. Semen analysis: looking for an upgrade in class. Fertil Steril. 2012;97(2):260–6.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    MULLER CH. Rationale, interpretation, andrology lab corner validation, and uses of sperm function tests. J Androl. 2000;21(1):10–30.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Lewis SE. Is sperm evaluation useful in predicting human fertility? Reproduction. 2007;134(1):31–40.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Aitken RJ. Sperm function tests and fertility. Int J Androl. 2006;29(1):69–75.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Oehninger S, et al. Sperm function assays and their predictive value for fertilization outcome in IVF therapy: a meta-analysis. Hum Reprod Update. 2000;6(2):160–8.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Benchaib M, et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18(5):1023–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Esterhuizen AD, et al. Clinical importance of a micro-assay for the evaluation of sperm acrosome reaction using homologous zona pellucida. Andrologia. 2001;33(2):87–93.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    De Wagenaar B, et al. Microfluidic single sperm entrapment and analysis. Lab Chip. 2015;15(5):1294–301.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Rutstein SO, Shah IH. Infecundity infertility and childlessness in developing countries. DHS Comparative Reports, 2004, 9.Google Scholar
  30. 30.
    Wong WY, et al. Male factor subfertility: possible causes and the impact of nutritional factors. Fertil Steril. 2000;73(3):435–42.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Van Steirteghem AC, et al. High fertilization and implantation rates after intracytoplasmic sperm injection. Hum Reprod. 1993;8(7):1061–6.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Palermo G, et al. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bungum M, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22(1):174–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Benchaib M, et al. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril. 2007;87(1):93–100.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Brincat D, et al. Male factors in ART outcome prediction. Gynecol Endocrinol. 2015;31(3):169–75.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Lloyd KCK. Gamete and embryo manipulation. In the mouse in biomedical research. Vol. 1. Elsevier Inc. 2007. p. 211–24. Scholar
  37. 37.
    Simon L, et al. Paternal influence of sperm DNA integrity on early embryonic development. Hum Reprod. 2014;29:2402–12. Scholar
  38. 38.
    Boomsma CM, et al. Semen preparation techniques for intrauterine insemination. Cochrane Database Syst Rev. 2007;(4):CD004507.Google Scholar
  39. 39.
    Jackson RE, et al. Effects of semen storage and separation techniques on sperm DNA fragmentation. Fertil Steril. 2010;94(7):2626–30.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Malvezzi H, et al. Sperm quality after density gradient centrifugation with three commercially available media: a controlled trial. Reprod Biol Endocrinol. 2014;12(1):121.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Henkel RR, Schill W. Sperm preparation for ART. Reprod Biol Endocrinol. 2003;1(1):108.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    O'Connell M, McClure N, Lewis S. The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum Reprod. 2002;17(3):704–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Younglai EV, et al. Sperm swim-up techniques and DNA fragmentation. Hum Reprod. 2001;16(9):1950–3.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Asghar W, et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Healthc Mater. 2014;3(10):1671–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Nosrati R, et al. Rapid selection of sperm with high DNA integrity. Lab Chip. 2014;14(6):1142–50.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Swain JE, et al. Regulation of spindle and chromatin dynamics during early and late stages of oocyte maturation by aurora kinases. Mol Hum Reprod. 2008;14(5):291–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Jurema MW, Nogueira D. In vitro maturation of human oocytes for assisted reproduction. Fertil Steril. 2006;86(5):1277–91.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Chian R, Buckett WM, Tan S. In-vitro maturation of human oocytes. Reprod Biomed Online. 2004;8(2):148–66.PubMedCrossRefGoogle Scholar
  49. 49.
    Trounson A, Anderiesz C, Jones G. Maturation of human oocytes in vitro and their developmental competence. Reproduction. 2001;121(1):51–75.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Vlahos NF, Gregoriou O. Prevention and management of ovarian hyperstimulation syndrome. Ann N Y Acad Sci. 2006;1092(1):247–64.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Heo YS, et al. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum Reprod. 2010;25(3):613–22.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Walters EM, et al. Production of live piglets following in vitro embryo culture in a microfluidic environment. Theriogenology. 2003;59(1):353.Google Scholar
  53. 53.
    Hester PN, et al. Enhanced cleavage rates following in vitro maturation of pig oocytes within polydimethylsiloxane-borosilicate microchannels. Theriogenology. 2002;57(1):723.Google Scholar
  54. 54.
    Yuan Y, et al. Use of a novel polydimethylsiloxane well insert to successfully mature, culture and identify single porcine oocytes and embryos. Reprod Fertil Dev. 2014;26(3):375–84.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Zargari S, et al. A microfluidic chip for in vitro oocyte maturation. Sens Lett. 2016;14(4):435–40.CrossRefGoogle Scholar
  56. 56.
    Serhal PF, et al. Oocyte morphology predicts outcome of intracytoplasmic sperm injection. Hum Reprod. 1997;12(6):1267–70.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Vigneault C, et al. Transcription factor expression patterns in bovine in vitro-derived embryos priorto maternal-zygotic transition. Biol Reprod. 2004;70(6):1701–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Van de Velde H, et al. Effects of different hyaluronidase concentrations and mechanical procedures for cumulus cell removal on the outcome of intracytoplasmic sperm injection. Hum Reprod. 1997;12(10):2246–50.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zeringue HC, Beebe DJ, Wheeler MB. Removal of cumulus from mammalian zygotes using microfluidic techniques. Biomed Microdevices. 2001;3(3):219–24.CrossRefGoogle Scholar
  60. 60.
    Zeringue HC, Rutledge JJ, Beebe DJ. Early mammalian embryo development depends on cumulus removal technique. Lab Chip. 2005;5(1):86–90.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Suh RS, et al. IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm. Hum Reprod. 2006;21(2):477–83.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Devroey P, Van Steirteghem A. A review of ten years experience of ICSI. Hum Reprod Update. 2004;10(1):19–28.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Burrello N, et al. Lower sperm aneuploidy frequency is associated with high pregnancy rates in ICSI programmes. Hum Reprod. 2003;18(7):1371–6.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Lopez-Garcia MDC, et al. Sperm motion in a microfluidic fertilization device. Biomed Microdevices. 2008;10(5):709–18.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Han C, et al. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device. Lab Chip. 2010;10(21):2848–54.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Matsuura K, et al. A microfluidic device to reduce treatment time of intracytoplasmic sperm injection. Fertil Steril. 2013;99(2):400–7.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Summers MC, Biggers JD. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update. 2003;9(6):557–82.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update. 1997;3(4):367–82.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Hickman DL, et al. Comparison of static and dynamic medium environments for culturing of pre-implantation mouse embryos. Comp Med. 2002;52(2):122–6.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Keefer CL, et al. In vitro culture of bovine IVM-IVF embryos: cooperative interaction among embryos and the role of growth factors. Theriogenology. 1994;41(6):1323–31.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Raty S, et al. Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip. 2004;4(3):186–90.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gu W, et al. Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc Natl Acad Sci U S A. 2004;101(45):15861–6.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Heo YS, et al. Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly (dimethylsiloxane) devices. Anal Chem. 2007;79(3):1126–34.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Huang H, et al. Digital microfluidic dynamic culture of mammalian embryos on an electrowetting on dielectric (EWOD) chip. PLoS One. 2015;10(5):e0124196.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Esteves TC, et al. A microfluidic system supports single mouse embryo culture leading to full-term development. RSC Adv. 2013;3(48):26451–8.CrossRefGoogle Scholar
  76. 76.
    Hao Z, Kieslinger D C, Vergouw C, et al. Microfluidic protocol for in vitro culture of human embryos[C]//17th international conference on miniaturized systems for chemistry and life sciences. 2013: 27–31.Google Scholar
  77. 77.
    O'Donovan C, et al. Development of a respirometric biochip for embryo assessment. Lab Chip. 2006;6(11):1438–44.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Houghton FD, et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod. 2002;17(4):999–1005.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Brison DR, et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod. 2004;19(10):2319–24.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Gardner DK, et al. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil Steril. 2001;76(6):1175–80.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Jones GM, et al. Glucose metabolism of human morula and blastocyst-stage embryos and its relationship to viability after transfer. Reprod Biomed Online. 2001;3(2):124–32.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Urbanski JP, et al. Noninvasive metabolic profiling using microfluidics for analysis of single preimplantation embryos. Anal Chem. 2008;80(17):6500–7.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Heo YS, et al. Real time culture and analysis of embryo metabolism using a microfluidic device with deformation based actuation. Lab Chip. 2012;12(12):2240–6.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Brown TA. Transcriptomes and proteomes[J]. 2002.
  85. 85.
    Katz-Jaffe MG, et al. The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod. 2009;15(5):271–7.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Katz-Jaffe MG, Schoolcraft WB, Gardner DK. Analysis of protein expression (secretome) by human and mouse preimplantation embryos. Fertil Steril. 2006;86(3):678–85.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Liao P. A disposable poly (methylmethacrylate)-based microfluidic module for protein identification by nanoelectrospray ionization-tandem mass spectrometry. Electrophoresis. 2001;22:3972–7.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Wheeler AR, et al. Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2004;76(16):4833–8.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Goluch ED, et al. A bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip. 2006;6(10):1293–9.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Dewalt E. Singled out for sequencing. Nat Methods. 2014;11(1):13.CrossRefGoogle Scholar
  91. 91.
    Streets AM, et al. Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci. 2014;111(19):7048–53.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet. 2016;17(3):175–88.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Zhang L, et al. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci. 1992;89(13):5847–51.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Fu Y, et al. Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc Natl Acad Sci. 2015;112(38):11923–8.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Guo H, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511(7511):606–10.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Smallwood SA, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11(8):817–20.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ronen M, Avrahami D, Gerber D. A sensitive microfluidic platform for a high throughput DNA methylation assay. Lab Chip. 2014;14(13):2354–62.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983;305(5936):707–9.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    AbdelHafez FF, et al. Slow freezing, vitrification and ultra-rapid freezing of human embryos: a systematic review and meta-analysis. Reprod Biomed Online. 2010;20(2):209–22.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Clark NA, Swain JE. Oocyte cryopreservation: searching for novel improvement strategies. J Assist Reprod Genet. 2013;30(7):865–75.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Song YS, et al. Microfluidics for cryopreservation. Lab Chip. 2009;9(13):1874–81.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Smith GD, et al. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification. Fertil Steril. 2010;94(6):2088–95.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Heo YS, et al. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform. Lab Chip. 2011;11(20):3530–7.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lai D, et al. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification. Hum Reprod. 2014;30(1):37–45. Scholar
  106. 106.
    Bhattacharjee N, et al. The upcoming 3D-printing revolution in microfluidics. Lab Chip. 2016;16(10):1720–42.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyPeking University Third HospitalBeijingChina
  2. 2.Departments of Obstetrics and Gynecology, Physiology, and UrologyUniversity of MichiganAnn ArborUSA

Personalised recommendations