Advertisement

Oocyte Denuding

  • Laura Francesca RienziEmail author
  • Roberta Maggiulli
  • Filippo Maria Ubaldi
Chapter

Abstract

The cumulus and corona cells are removed prior to any micromanipulation procedure by exposure of the cumulus–oocyte complexes to a combined enzymatic and mechanical treatment that causes the breakdown of the hyaluronan-based matrix surrounding COCs and disperses the cumulus cells from oocytes. After denudation of cumulus and corona layers, a noninvasive analysis of different oocyte quality biomarkers can be provided in order to select the most developmentally competent oocytes to inseminate. In this chapter, indications about the equipment, procedure, and timing to perform oocyte denudation that should be adopted in order to minimize any potential damage to oocyte viability will be reviewed.

Keywords

Cumulus oophorus Oocyte denudation Oocyte morphological assessment Gene expression analysis Microfluidic device 

References

  1. 1.
    Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oöcyte and zygote. Proc Natl Acad Sci U S A. 1967;58(2):560–7.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Donahue RP, Stern S. Follicular cell support of oocyte maturation: production of pyruvate in vitro. J Reprod Fertil. 1968;17(2):395–8.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Brower PT, Schultz RM. Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev Biol. 1982;90(1):144–53.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Haghighat N, Van Winkle LJ. Developmental change in follicular cell-enhanced amino acid uptake into mouse oocytes that depends on intact gap junctions and transport system Gly. J Exp Zool. 1990;253(1):71–82.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Buccione R, Vanderhyden BC, Caron PJ, Eppig JJ. FSH-induced expansion of the mouse cumulus oophorus in vitro is dependent upon a specific factor(s) secreted by the oocyte. Dev Biol. 1990;138:16–25.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Salustri A, Ulisse S, Yanagishita M, Hascall VC. Hyaluronic acid synthesis by mural granulosa cells and cumulus cells in vitro is selectively stimulated by a factor produced by oocytes and by transforming growth factor-beta. J Biol Chem. 1990;265(32):19517–23.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Canipari R, Epifano O, Siracusa G, Salustri A. Mouse oocytes inhibit plasminogen activator production by ovarian cumulus and granulosa cells. Dev Biol. 1995;167(1):371–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci U S A. 2002;99(5):2890–4.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118(Pt 22):5257–68.PubMedCrossRefGoogle Scholar
  10. 10.
    Dong J, Albertini DF, Nishimori K, et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383:531–5.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Albertini DF, Combelles CM, Benecchi E, Carabatsos MJ. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121:647–53.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Testart J, Lassalle B, Frydman R, Belaisch JC. A study of factors affecting the success of human fertilization in vitro. II. Influence of semen quality and oocyte maturity on fertilization and cleavage. Biol Reprod. 1983;28:425–31.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Laufer N, Tarlatzis BC, DeCherney AH, et al. Asynchrony between human cumulus–corona cell complex and oocyte maturation after human menopausal gonadotropin treatment for in vitro fertilization. Fertil Steril. 1984;42:366–72.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bar-Ami S, Gitay-Goren H, Brandes JM. Different morphological and steroidogenic patterns in oocyte/cumulus–corona cell complexes aspirated at in vitro fertilization. Biol Reprod. 1989;41:761–70.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    McKenzie LJ, Pangas SA, Carson SA, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod. 2004;19:2869–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Fatehi AN, Roelen BA, Colenbrander B, et al. Presence of cumulus cells during in vitro fertilization protects the bovine oocyte against oxidative stress and improves first cleavage but does not affect further development. Zygote. 2005;13:177–85.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Edwards RG, Steptoe PC, Fowler RE, Baillie J. Observations on preovulatory human ovarian follicles and their aspirates. Br J Obstet Gynaecol. 1980;87(9):69–79.Google Scholar
  18. 18.
    Redding GP, Bronlund JE, Hart AL. The effects of IVF aspiration on the temperature, dissolved oxygen levels, and pH of follicular fluid. J Assist Reprod Genet. 2006;23(1):37–40.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Khamsi F, Roberge S, Lacanna IC, Wong J, Yavas Y. Effects of granulosa cells, cumulus cells, and oocyte density on in vitro fertilization in women. Endocrine. 1999;10:161–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Rattanachaiyanont M, Leader A, Léveillé MC. Lack of correlation between oocyte-corona-cumulus complex morphology and nuclear maturity of oocytes collected in stimulated cycles for intracytoplasmic sperm injection. Fertil Steril. 1999;71(5):937–40.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Khamsi F, Roberge S. Granulosa cells of the cumulus oophorus are different from mural granulosa cells in their response to gonadotrophins and IGF-I. J Endocrinol. 2001;170(3):565–73.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    ESHRE. Intracytoplasmic sperm injection (ICSI) in 2006: evidence and evolution. Hum Reprod Update. 2007;13:515–26.CrossRefGoogle Scholar
  24. 24.
    Mahadevan MM, Trounson AO. Removal of the cumulus oophorus from the human oocyte for in vitro fertilization. Fertil Steril. 1985;43(2):263–7.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Van de Velde H, Nagy ZP, Joris H, De Vos A, Van Steirteghem AC. Effects of different hyaluronidase concentrations and mechanical procedures for cumulus cell removal on the outcome of intracytoplasmic sperm injection. Hum Reprod. 1997;12(10):2246–50.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Trounson AO, Mohr LR, Wood C, Leeton JF. Effect of delayed insemination on in-vitro fertilization, culture and transfer of human embryos. J Reprod Fertil. 1982;64(2):285–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Van de Velde H, De Vos A, Joris H, Nagy ZP, Van Steirteghem AC. Effect of timing of oocyte denudation and micro-injection on survival, fertilization and embryo quality after intracytoplasmic sperm injection. Hum Reprod. 1998;13(11):3160–4.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Rienzi L, Ubaldi F, Anniballo R, Cerulo G, Greco E. Preincubation of human oocytes may improve fertilization and embryo quality after intracytoplasmic sperm injection. Hum Reprod. 1998;13(4):1014–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ho JY, Chen MJ, Yi YC, Guu HF, Ho ES. The effect of preincubation period of oocytes on nuclear maturity, fertilization rate, embryo quality, and pregnancy outcome in IVF and ICSI. J Assist Reprod Genet. 2003;20(9):358–64.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Yanagida K, Yazawa H, Katayose H, Suzuki K, Hoshi K, Sato A. Influence of oocyte preincubation time on fertilization after intracytoplasmic sperm injection. Hum Reprod. 1998;13(8):2223–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14(2):159–77.PubMedCrossRefGoogle Scholar
  32. 32.
    Veeck LL. The morphologic estimation of mature oocytes and their preparation for insemination. In: Jones Jr HW, Jones GS, et al., editors. In-vitro fertilization – Norfolk. Baltimore: Williams and Wilkins; 1986. p. 81.Google Scholar
  33. 33.
    Wolf DP. Oocyte quality and fertilization. In: Wolf DP, editor. In-vitro fertilization and embryo transfer. New York: Plenum Press; 1988. p. 129–38.CrossRefGoogle Scholar
  34. 34.
    Daya S, Kohut J, Gunby J, et al. Influence of blood clots in the cumulus complex on oocyte fertilization and cleavage. Hum Reprod. 1990;5:744–6.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Veeck LL. The morphological assessment of human oocytes and early concepti. In: Keel BA, Webster BW, editors. Handbook of the laboratory diagnosis and treatment of infertility. Boca Raton, Boston: CRC Press; 1990. p. 353±369.Google Scholar
  36. 36.
    Ng ST, Chang TH, Wu TC. Prediction of the rates of fertilization, cleavage, and pregnancy success by cumulus-coronal morphology in an in vitro fertilization program. Fertil Steril. 1999;72:412–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Lin YC, Chang SY, Lan KC, et al. Human oocyte maturity in vivo determines the outcome of blastocyst development in vitro. J Assist Reprod Genet. 2003;20:506–12.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.CrossRefGoogle Scholar
  39. 39.
    Motta PM, Nottola SA, Pereda J, et al. Ultrastructure of human cumulus oophorus: a transmission electron microscopic study on oviductal oocytes and fertilized eggs. Hum Reprod. 1995;10:2361–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Ebner T, Moser M, Shebl O, Sommergruber M, Yaman C, Tews G. Blood clots in the cumulus-oocyte complex predict poor oocyte quality and post-fertilization development. Reprod Biomed Online. 2008;16(6):801–7.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Balaban B, Urman B. Effect of oocyte morphology on embryo development and implantation. Reprod Biomed Online. 2006;12:608–15.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kahraman S, Yakin K, Donmez E, et al. Relationship between granular cytoplasm of oocytes and pregnancy outcome following intracytoplasmic sperm injection. Hum Reprod. 2000;15:2390–3.PubMedCrossRefGoogle Scholar
  43. 43.
    Alikani M, Palermo G, Adler A, Bertoli M, Blake M, Cohen J. Intracytoplasmic sperm injection in dysmorphic human oocytes. Zygote. 1995;3:283–8.PubMedCrossRefGoogle Scholar
  44. 44.
    De Sutter P, Dozortsev D, Qian C, Dhont M. Oocyte morphology does not correlate with fertilization rate and embryo quality after intracytoplasmic sperm injection. Hum Reprod. 1996;11:595–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Xia P. Intracytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality. Hum Reprod. 1997;12:1750–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Balaban B, Urman B, Sertac A, Alatas C, Aksoy S, Mercan R. Oocyte morphology does not affect fertilization rate, embryo quality and implantation rate after intracytoplasmic sperm injection. Hum Reprod. 1998;13(12):3431–3.PubMedCrossRefGoogle Scholar
  47. 47.
    Ebner T, Yaman C, Moser M, Sommergruber M, Feichtinger O, Tews G. Prognostic value of first polar body morphology on fertilization rate and embryo quality in intracytoplasmic sperm injection. Hum Reprod. 2000;15:427–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Ebner T, Moser M, Tews G. Is oocyte morphology prognostic of embryo developmental potential after ICSI? Reprod Biomed Online. 2006;12:507–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Mikkelsen AL, Lindenberg S. Morphology of in-vitro matured oocytes: impact on fertility potential and embryo quality. Hum Reprod. 2001;16:1714–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Rienzi L, Ubaldi FM, Iacobelli M, Minasi MG, Romano S, Ferrero S, Sapienza F, Baroni E, Litwicka K, Greco E. Significance of metaphase II human oocyte morphology on ICSI outcome. Fertil Steril. 2008;90(5):1692–700.. Epub 2008 Feb 4PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ten T, Mendiola J, Vioque J, de Juan J, Bernabeu R. Donor oocyte dysmorphism and their influence on fertilization and embryo quality. Reprod Biomed Online. 2006;14:40–8.CrossRefGoogle Scholar
  52. 52.
    Longo FJ, Chen DY. Development of cortical polarity in mouse eggs: involvement of the meiotic apparatus. Dev Biol. 1985;107:382–94.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Szollosi D, Czolowska R, Soltynska MS, et al. Ultrastructure of cell fusion and premature chromosome condensation (PCC) of thymocyte nuclei in metaphase II mouse oocytes. Biologie Cellulaire. 1986;56:239–49.CrossRefGoogle Scholar
  54. 54.
    Eichenlaub-Ritter U, Shen Y, Tinneberg HR. Manipulation of the oocyte: possible damage to the spindle apparatus. Reprod Biomed Online. 2002;5:117–24.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ursula E-R, Vogt E, Yin H, Gosden R. Symposium: mitochondria and human conception Spindles, mitochondria and redox potential in ageing oocytes. Reprod Biomed Online. 2004;8:45–58.CrossRefGoogle Scholar
  56. 56.
    Rienzi L, Ubaldi F, Iacobelli M, Minasi MG, Romano S, Greco E. Meiotic spindle visualization in living human oocytes. Reprod Biomed Online. 2005;10(2):192–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Battaglia DE, Goodwin P, Klein NA, et al. Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum Reprod. 1996;11:2217–22.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Bernard A, Fuller BJ. Cryopreservation of human oocytes: a review of current problems and perspectives. Hum Reprod Update. 1996;2:193–207.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Oldenbourg R, Microsc MGJ. New polarized light microscope with precision universal compensator. J Microsc. 1995;180:140–7.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Oldenbourg R. Polarized light microscopy of spindles. Methods Cell Biol. 1999;61:175–208.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Liu L, Trimarchi JR, Oldenbourg R, Keefe DL. Increased birefringence in the meiotic spindle provides a new marker for the onset of activation in living oocytes. Biol Reprod. 2000;63(1):251–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Braga D, Madaschi C, Bonetti TC, Iaconelli A, Rodrigues D, Borges E. Meiotic spindle imaging with Octax ICSI guard in in vitro matured human oocytes. Fertil Steril. 2006;86(3):129.CrossRefGoogle Scholar
  63. 63.
    Pelletier C, Keefe DL, Trimarchi JR. Noninvasive polarized light microscopy quantitatively distinguishes the multilaminar structure of the zona pellucida of living human eggs and embryos. Fertil Steril. 2004;81(Suppl 1):850–6.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Shen Y, Stalf T, Mehnert C, Eichenlaub-Ritter U, Tinneberg HR. High magnitude of light retardation by the zona pellucida is associated with conception cycles. Hum Reprod. 2005;20(6):1596–606.. Epub 2005 Feb 25PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Rienzi L, Martinez F, Ubaldi F, et al. Polscope analysis of meiotic spindle changes in living metaphase II human oocytes during the freezing and thawing procedures. Hum Reprod. 2004;19:655–9.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    De Santis L, Cino I, Rabellotti E, et al. Polar body morphology and spindle imaging as predictors of oocyte quality. Reprod Biomed Online. 2005;11(1):36–42.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Montag M, Schimming T, van der Ven H. Spindle imaging in human oocytes: the impact of the meiotic cell cycle. Reprod Biomed Online. 2006;12:442–6.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Montag M, Köster M, van der Ven K, van der Ven H. Gamete competence assessment by polarizing optics in assisted reproduction. Hum Reprod Update. 2011;17(5):654–66.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Rienzi L, Ubaldi F. Oocyte retrieval and selection. In: Gardner DK, Weissman A, Howles CM, Shoham Z, editors. Textbook of assisted reproductive technologies: laboratory and clinical perspectives. 3rd ed. London: Informa Healthcare; 2009. p. 5–101.Google Scholar
  70. 70.
    Cohen Y, Malcov M, Schwartz T, Mey-Raz N, Carmon A, Cohen T, Lessing JB, Amit A, Azem F. Spindle imaging: a new marker for optimal timing of ICSI? Hum Reprod. 2004;19:649–54.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Wang WH, Meng L, Hackett RJ, Odenbourg R, Keefe DL. Limited recovery of meiotic spindles in living human oocytes after cooling–rewarming observed using polarized light microscopy. Hum Reprod. 2001;16:2374–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Wang WH, Meng L, Hackett RJ, Oldenbourg R, Keefe DL. Rigorous thermal control during intracytoplasmic sperm injection stabilizes the meiotic spindle and improves fertilization and pregnancy rates. Fertil Steril. 2002;77:1274–7.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wang WH, Meng L, Hackett RJ, Odenbourg R, Keefe DL. The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes. Fertil Steril. 2001;75:348–53.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Rienzi L, Ubaldi F, Martinez F, et al. Relationship between meiotic spindle location with regard to the polar body position and oocyte developmental potential after ICSI. Hum Reprod. 2003;18:1289–93.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Cohen Y, Malcov M, Schwartz T, et al. Spindle imaging: a new marker for optimal timing of ICSI? Hum Reprod. 2004;19:649–54.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Rama Raju GA, Prakash GJ, Krishna KM, Madan K. Meiotic spindle and zona pellucida characteristics as predictors of embryonic development: a preliminary study using PolScope imaging. Reprod Biomed Online. 2007;14:166–74.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Cooke S, Tyler JP, Driscoll GL. Meiotic spindle location and identification and its effect on embryonic cleavage plane and early development. Hum Reprod. 2003;18:2397–405.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Eichenlaub-Ritter U, Schmiady H, Kentenich H, Soewarto D. Recurrent failure in polar body formation and premature chromosome condensation in oocytes from a human patient: indicators of asynchrony in nuclear and cytoplasmic maturation. Hum Reprod. 1995;10:2343–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Hassan-Ali H, Hisham-Saleh A, El-Gezeiry D, et al. Perivitelline space granularity: a sign of human menopausal gonadotrophin overdose in intracytoplasmic sperm injection. Hum Reprod. 1998;13:3425–30.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Loutradis D, Drakakis P, Kallianidis K, et al. Oocyte morphology correlates with embryo quality and pregnancy rate after intracytoplasmic sperm injection. Fertil Steril. 1999;72:240–4.PubMedCrossRefGoogle Scholar
  81. 81.
    Scott LA, Smith S. The successful use of pronuclear embryo transfers the day following oocyte retrieval. Hum Reprod. 1998;13:1003–13.PubMedCrossRefGoogle Scholar
  82. 82.
    Scott L. Pronuclear scoring as a predictor of embryo development. Reprod Biomed Online. 2003;6:201–14.PubMedCrossRefGoogle Scholar
  83. 83.
    Rienzi L, Vajta G, Ubaldi F. Predictive value of oocyte morphology in human IVF: a systematic review of the literature. Hum Reprod Update. 2011;17:34–45.PubMedCrossRefGoogle Scholar
  84. 84.
    Otsuki J, Okada A, Morimoto K, Nagai Y, Kubo H. The relationship between pregnancy outcome and smooth endoplasmic reticulum clusters in MII human oocytes. Hum Reprod. 2004;19:1591–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Ebner T, Moser M, Shebl O, Sommerguber M, Tews G. Prognosis of oocytes showing aggregation of smooth endoplasmic reticulum. Reprod Biomed Online. 2008;16:113–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Akarsu C, Cag˘lar G, Vicdan K, So¨zen E, Biberog˘lu K. Smooth endoplasmic reticulum aggregations in all retrieved oocytes causing recurrent multiple anomalies: case report. Fertil Steril. 2009;2:1496.e1–3.Google Scholar
  87. 87.
    Sa´ R, Cunha M, Silva J, Luís A, Oliveira C, Teixeira da Silva J, Barros A, Sousa M. Ultrastructure of smooth endoplasmic reticulum aggregates in human metaphase II oocytes and clinical implications. Fertil Steril. 2011;96:143–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Mateizel I, Van Landuyt L, Tournaye H, Verheyen G. Deliveries of normal healthy babies from embryos originating from oocytes showing the presence of smooth endoplasmic reticulum aggregates. Hum Reprod. 2013;28(8):2111–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Shaw-Jackson C, Van Beirs N, Thomas AL, Rozenberg S, Autin C. Can healthy babies originate from oocytes with smooth endoplasmic reticulum aggregates? A systematic mini-review. Hum Reprod. 2014;29(7):1380–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Verlhac MH, Lefebvre C, Guillaud P, Rassinier P, Maro B. Asymmetric division in mouse oocytes: with or without MOS. Curr Biol. 2000;10:1303–6.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    De Santis L, Cino I, Rabellotti E, Calzi F, Persico P, Borini A, et al. Polar body morphology and spindle imaging as predictors of oocyte quality. Reprod Biomed Online. 2005;11:36–42.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Balakier H, Bouman D, Sojecki A, Librach C, Squire JA. Morphological and cytogenetic analysis of human giant oocytes and giant embryos. Hum Reprod. 2002;17:2394–401.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Feuerstein P, Cadoret V, Dalbies-Tran R, Guerif F, Bidault R, Royere D. Gene expression in human cumulus cells: one approach to oocyte competence. Hum Reprod. 2007;22:3069–77.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Ouandaogo ZG, Haouzi D, Assou S, Dechaud H, Kadoch IJ, De Vos J, Hamamah S. Human cumulus cells molecular signature in relation to oocyte nuclear maturity stage. PLoS One. 2011;6(11):e27179.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, Amato P, Matzuk MM. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod. 2004;19:2869–74.PubMedCrossRefGoogle Scholar
  96. 96.
    Cillo F, Brevini TA, Antonini S, Paffoni A, Ragni G, Gandolfi F. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction. 2007;134:645–50.PubMedCrossRefGoogle Scholar
  97. 97.
    Fragouli E, Bianchi V, Delhanty J, Patrizio P, Wells D. Gene expression analysis of human oocytes: towards a non-invasive diagnosis of meiotic aneuploidy. Hum Reprod. 2007;22:i32, O–078.Google Scholar
  98. 98.
    Gasca S, Pellestor F, Assou S, Loup V, Anahory T, Dechaud H, De Vos J, Hamamah S. Identifying new human oocyte marker genes: a microarray approach. Reprod Biomed Online. 2007;14(2):175–83.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Assou S, Haouzi D, Mahmoud K, Aouacheria A, Guillemin Y, Pantesco V, Reme T, Dechaud H, De Vos J, Hamamah S. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol Hum Reprod. 2008;14:711–9.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Hamel M, Dufort I, Robert C, Gravel C, Leveille MC, Leader A, Sirard MA. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum Reprod. 2008;23:1118–27.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    van Montfoort AP, Geraedts JP, Dumoulin JC, Stassen AP, Evers JL, Ayoubi TA. Differential gene expression in cumulus cells as a prognostic indicator of embryo viability: a microarray analysis. Mol Hum Reprod. 2008;14(3):157–68.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Wells D, Fragouli E, Bianchi V, Borini A, Patrizio P. Identification of novel non-invasive biomarkers of oocyte aneuploidy. Fertil Steril. 2008;90:S35.CrossRefGoogle Scholar
  103. 103.
    Fragouli E, Wells D, Iager A, Kayisli U, Patrizio P. Alteration of gene expression in human cumulus cells as a potential indicator of oocyte aneuploidy. Hum Reprod. 2012;27:2559–68.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Muechler EK, Graham MC, Huang KE, et al. Parthenogenesis of human oocytes as a function of vacuum pressure. J In Vitro Fert Embryo Transf. 1989;6:335–7.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Palermo G, Joris H, Devoroey P, et al. Sperm characteristics and outcome of human assisted fertilization by subzonal insemination and intracytoplasmic sperm injection. Fertil Steril. 1993;59:826–35.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Van Steirteghem AC, Nagy ZP, Joris H, et al. High fertilization and implantation rates after intracytoplasmic sperm injection. Hum Reprod. 1993;8:1061–6.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Joris H, Nagy Z, Van de Velde H, et al. Intracytoplasmic sperm injection: laboratory set-up and injection procedure. Hum Reprod. 1998;13(Suppl 1):76–86.. ReviewPubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Maro B, Verlhac MH. Polar body formation: new rules for asymmetric divisions. Nat Cell Biol. 2002;4:E281–3.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Moon JH, Hyun CS, Lee SW, et al. Visualization of the metaphase II meiotic spindle in living human oocytes using the Polscope enables the prediction of embryonic developmental competence after ICSI. Hum Reprod. 2003;18:817–20.PubMedCrossRefGoogle Scholar
  110. 110.
    Woodward BJ, Montgomery SJ, Hartshorne GM, Campbell KH, Kennedy R. Spindle position assessment prior to ICSI does not benefit fertilization or early embryo quality. Reprod Biomed Online. 2008;16(2):232–8.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Sathananthan AH, Trounson A, Freemann L, Brady T. The effects of cooling human oocytes. Hum Reprod. 1988;3:968–77.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Pickering SJ, Braude PR, Johnson MH, Cant A, Currie J. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil Steril. 1990;54:102–8.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Almeida PA, Bolton VN. The effect of temperature fluctuations on the cytoskeletal organisation and chromosomal constitution of the human oocyte. Zygote. 1995;3:357–65.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Zenzes MT, Bielecki R, Casper RF, Leibo SP. Effects of chilling to 0°C on the morphology of meiotic spindles in human metaphase II oocytes. Fertil Steril. 2001;75:769–77.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Truyen U, Parrish CR, Harder TC, Kaaden OR. There is nothing permanent except change. The emergence of new virus diseases. Vet Microbiol. 1995;43:103–22.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Parinaud J, Vieitez G, Milhet P, Richoilley G. Use of a plant enzyme preparation (Coronase) instead of hyaluronidase for cumulus cell removal before intracytoplasmic sperm injection. Hum Reprod. 1998;13(7):1933–5.PubMedCrossRefGoogle Scholar
  117. 117.
    De Vos A, Van Landuyt L, Van Ranst H, Vandermonde A, D'Haese V, Sterckx J, Haentjens P, Devroey P, Van der Elst J. Randomized sibling-oocyte study using recombinant human hyaluronidase versus bovine-derived sigma hyaluronidase in ICSI patients. Hum Reprod. 2008;23(8):1815–9.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Evison M, Pretty C, Taylor E, Franklin C. Human recombinant hyaluronidase (Cumulase) improves intracytoplasmic sperm injection survival and fertilization rates. Reprod Biomed Online. 2009;18(6):811–4.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Dale B, Menezo Y, Cohen J, DiMatteo L, Wilding M. Intracellular pH regulation in the human oocyte. Hum Reprod. 1998;13(4):964–70.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    FitzHarris G, Baltz JM. Regulation of intracellular pH during oocyte growth and maturation in mammals. Reproduction. 2009;138(4):619–27.PubMedCrossRefGoogle Scholar
  121. 121.
    Swain JE, Pool TB. New pH-buffering system for media utilized during gamete and embryo manipulations for assisted reproduction. Reprod Biomed Online. 2009;18(6):799–810.PubMedCrossRefGoogle Scholar
  122. 122.
    Heinecke JW, Shapiro BM. The respiratory burst oxidase of fertilization. A physiological target for regulation by protein kinase C. J Biol Chem. 1992;267(12):7959–62.PubMedGoogle Scholar
  123. 123.
    Schomer B, Epel D. Redox changes during fertilization and maturation of marine invertebrate eggs. Dev Biol. 1998;203(1):1–11.PubMedCrossRefGoogle Scholar
  124. 124.
    Schomer Miller B, Epel D. The roles of changes in NADPH and pH during fertilization and artificial activation of the sea urchin egg. Dev Biol. 1999;216(1):394–405.PubMedCrossRefGoogle Scholar
  125. 125.
    Dumoulin J, Meijers C, Bras M, Coonen E, Geraedts JP, Evers JL. Effect of oxygen concentration on human in-vitro fertilization and embryo transfer. Hum Reprod. 1999;14:465–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Kovacic B, Vlaisavljević V. Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: a prospective study on sibling oocytes. Reprod Biomed Online. 2008;17(2):229–36.PubMedCrossRefGoogle Scholar
  127. 127.
    Ciray HN, Aksoy T, Yaramanci K, Karayaka I, Bahceci M. In vitro culture under physiologic oxygen concentration improves blastocyst yield and quality: a prospective randomized survey on sibling oocytes. Fertil Steril. 2009;91(4 Suppl):1459–61.PubMedCrossRefGoogle Scholar
  128. 128.
    Nanassy L, Peterson CA, Wilcox AL, Peterson CM, Hammoud A, Carrell DT. Comparison of 5% and ambient oxygen during days 3–5 of in vitro culture of human embryos. Fertil Steril. 2010;93(2):579–85.PubMedCrossRefGoogle Scholar
  129. 129.
    Peng ZF, Shi SL, Jin HX, Yao GD, Wang EY, Yang HY, Song WY, Sun YP. Impact of oxygen concentrations on fertilization, cleavage, implantation, and pregnancy rates of in vitro generated human embryos. Int J Clin Exp Med. 2015;8(4):6179–85.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Guo N, Li Y, Ai J, Gu L, Chen W, Liu Q. Two different concentrations of oxygen for culturing precompaction stage embryos on human embryo development competence: a prospective randomized sibling-oocyte study. Int J Clin Exp Pathol. 2014;7(9):6191–8.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Swain JE. Decisions for the IVF laboratory: comparative analysis of embryo culture incubators. Reprod Biomed Online. 2014;28(5):535–47.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Kasterstein E, Strassburger D, Komarovsky D, Bern O, Komsky A, Raziel A, Friedler S, Ron-El R. The effect of two distinct levels of oxygen concentration on embryo development in a sibling oocyte study. J Assist Reprod Genet. 2013;30(8):1073–9.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    de los Santos MJ, Gámiz P, Albert C, Galán A, Viloria T, Pérez S, Romero JL, Remohï J. Reduced oxygen tension improves embryo quality but not clinical pregnancy rates: a randomized clinical study into ovum donation cycles. Fertil Steril. 2013;100(2):402–7.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil Steril. 2013;99(3):738–44.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Calzi F, Papaleo E, Rabellotti E, Ottolina J, Vailati S, Viganò P, Candiani M. Exposure of embryos to oxygen at low concentration in a cleavage stage transfer program: reproductive outcomes in a time-series analysis. Clin Lab. 2012;58(9–10):997–1003.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Kovačič B. Culture systems: low-oxygen culture. Methods Mol Biol. 2012;912:249–72.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Sepulveda S, Steurer I, Gazzo E, Escudero E, Noriega L. Effect of oxygen conditions on the results of an oocyte donation program: A prospective randomized trial [Efeito das condicoes de oxigenio no resultado de um programa de ovo–doacao: Estudoprospectivo e randomizado]. Jornal Brasileiro de Reproducao Assistida. 2011;15(3):32–3.Google Scholar
  138. 138.
    Bontekoe S, Mantikou E, van Wely M, Seshadri S, Repping S, Mastenbroek S. Low oxygen concentrations for embryo culture in assisted reproductive technologies. Cochrane Database Syst Rev. 2012;7:CD008950.Google Scholar
  139. 139.
    Gomes Sobrinho DB, Oliveira JB, Petersen CG, Mauri AL, Silva LF, Massaro FC, Baruffi RL, Cavagna M, Franco JG Jr. IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis. Reprod Biol Endocrinol. 2011;9(1):143.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Kovacic B, Sajko MC, Vlaisavljević V. A prospective, randomized trial on the effect of atmospheric versus reduced oxygen concentration on the outcome of intracytoplasmic sperm injection cycles. Fertil Steril. 2010;94(2):511–9.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Ciray HN, Aksoy T, Yaramanci K, Karayaka I, Bahceci M. In vitro culture under physiologic oxygen concentration improves blastocyst yield and quality: a prospective randomized survey on sibling oocytes. Fertil Steril. 2009;91 Suppl(4):1459–61.CrossRefGoogle Scholar
  142. 142.
    Meintjes M, Chantilis SJ, Douglas JD, Rodriguez AJ, Guerami AR, Bookout DM, Barnett BD, Madden JD. A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum Reprod. 2009;24(2):300–7.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Waldenström U, Engström AB, Hellberg D, Nilsson S. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil Steril. 2009;91(6):2461–5.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Kea B, Gebhardt J, Watt J, Westphal LM, Lathi RB, Milki AA, Behr B. Effect of reduced oxygen concentrations on the outcome of in vitro fertilization. Fertil Steril. 2007;87(1):213–6.. Epub 2006 Nov 1PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Bahçeci M, Ciray HN, Karagenc L, Uluğ U, Bener F. Effect of oxygen concentration during the incubation of embryos of women undergoing ICSI and embryo transfer: a prospective randomized study. Reprod Biomed Online. 2005;11(4):438–43.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Dumoulin JC, Meijers CJ, Bras M, Coonen E, Geraedts JP, Evers JL. Effect of oxygen concentration on human in-vitro fertilization and embryo culture. Hum Reprod. 1999;14(2):465–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Dumoulin JC, Vanvuchelen RC, Land JA, Pieters MH, Geraedts JP, Evers JL. Effect of oxygen concentration on in vitro fertilization and embryo culture in the human and the mouse. Fertil Steril. 1995;63(1):115–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Quinn P, Warnes GM, Kerin JF, Kirby C. Culture factors in relation to the success of human in vitro fertilization and embryo transfer. Fertil Steril. 1984;41(2):202–9.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Ebner T, Moser M, Sommergruber M, et al. Incomplete denudation of oocytes prior to ICSI enhances embryo quality and blastocyst development. Hum Reprod. 2006;21(11):2972–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Goud PT, Goud AP, Qian C, Laverge H, Van der Elst J, De Sutter P, Dhont M. In-vitro maturation of human germinal vesicle stage oocytes: role of cumulus cells and epidermal growth factor in the culture medium. Hum Reprod. 1998;13:1638–44.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Yamazaki Y, Wakayama T, Yanagimachi R. Contribution of cumulus cells and serum to the maturation of oocyte cytoplasm as revealed by intracytoplasmic sperm injection (ICSI). Zygote. 2001;9:277–82.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Zeringue HC, Beebe DJ. Microfluidic removal of cumulus cells from Mammalian zygotes. Methods Mol Biol. 2004;254:365–74.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Laura Francesca Rienzi
    • 1
    Email author
  • Roberta Maggiulli
    • 2
  • Filippo Maria Ubaldi
    • 1
  1. 1.G.E.N.E.R.A. Centre for Reproductive Medicine of Valle Giulia ClinicRomeItaly
  2. 2.Clinca Valle Giulia, GeneraRomeItaly

Personalised recommendations