Assessment of Oocyte Quality

  • Basak BalabanEmail author


Assessment of oocyte morphology and determination of its correlation with quality/viability and the clinical outcome are difficult tasks, since the underlying mechanisms that change the appearance are multifactorial and complex. More than half of the oocytes collected can contain at least one morphological abnormality, and this may be correlated with the asynchrony between nuclear and cytoplasmic maturation of the MII oocyte which plays an important role on its viability and the clinical outcome. Morphological variations of the oocytes may also result from other intrinsic factors such as age and genetic defects or extrinsic factors such as stimulation protocols, culture conditions, and nutrition. Conflicting results are published in the literature regarding the effect of morphological variations of the oocyte on embryo development and implantation. This chapter will review the correlation of morphological abnormalities of the MII oocyte and the clinical outcome and the effect on genetic disorders, discuss the predictive value of specific abnormalities, and examine whether any of these parameters can be utilized in all the scoring systems applied in in vitro fertilization (IVF) laboratories.


Oocyte quality Oocyte morphology Cytoplasmic abnormalities Extracytoplasmic abnormalities Dysmorphic zona pellucida First polar body morphology Perivitelline space abnormalities Smooth endoplasmic reticulum clusters (sERCs) Cytoplasmic vacuoles Refractile bodies 


  1. 1.
    Alpha Scientists in Reproductive Medicine, ESHRE Special Interest group of Embryology. Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Reprod Biomed Online. 2011;22:632–46.CrossRefGoogle Scholar
  2. 2.
    Rienzi L, Balaban B, Ebner T, Mandelbaum J. The oocyte. Hum Reprod. 2012;27:i2–i21.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Balaban B, Urman B. Effect of oocyte morphology on embryo development and implantation. Reprod Biomed Online. 2006;12:608–15.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ebner T. Is oocyte morphology prognostic of embryo developmental potential after ICSI? Reprod Biomed Online. 2006;12:507–12.CrossRefGoogle Scholar
  5. 5.
    Van Blerkom J, Henry G. Oocyte dysmorphism and aneuploidy in meiotically mature human oocytes after ovarian stimulation. Hum Reprod. 1992;7:379–90.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    De Sutter P, Dozortsev D, Qian C, et al. Oocyte morphology does not correlate with fertilization rate and embryo quality after intracytoplasmic sperm injection. Hum Reprod. 1996;11:595–7.CrossRefGoogle Scholar
  7. 7.
    Loutradis D, Drakakis P, Kallianidis K, et al. Oocyte morphology correlated with embryo quality and pregnancy rates after intracytoplasmic sperm injection. Fertil Steril. 1999;72:240–4.CrossRefGoogle Scholar
  8. 8.
    Ten J, Mendiola J, Vioque J, Bernabeu R, et al. Donor oocyte dysmorphisms and their influence on fertilization and embryo quality. Reprod Biomed Online. 2007;14:40–8.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Balaban B, Urman B, Sertac A, et al. Oocyte morphology does not affect fertilization rate, embryo quality and implantation rate after intracytoplasmic sperm injection. Reprod Biomed Online. 1998;13:3431–3.Google Scholar
  10. 10.
    Balaban B, Ata B, Isiklar A, et al. Severe cytoplasmic abnormalities of the oocyte decrease cryosurvival and subsequent embryonic development of cryopreserved embryos. Hum Reprod. 2008;23:1778–85.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Esfandiari N, Burjaq H, Gotlieb L, et al. Brown oocytes: implications for assisted reproductive technology. Fertil Steril. 2006;86:1522–5.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Rienzi L, Ubaldi FM, Lacobelli M, et al. Significance of metaphase II stage human oocyte morphology on ICSI outcome. Fertil Steril. 2008;90:1692–700.Google Scholar
  13. 13.
    Wilding M, Di ML, D’Andretti S, et al. An oocyte score for use in assisted reproduction. J Assist Reprod Biomed Online. 2007;24:350–8.CrossRefGoogle Scholar
  14. 14.
    Serhal PF, Ranieri DM, Kinis A, et al. Oocyte morphology predicts outcome of intracytoplasmic sperm injection. Hum Reprod. 1997;12:1267–70.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kahraman S, Yakin K, Donmez E, et al. Relationship between granular cytoplasm of oocytes and pregnancy outcome following intracytoplasmic sperm injection. Hum Reprod. 2000;15:2390–3.CrossRefGoogle Scholar
  16. 16.
    Meriano JM, Alexis J, Visram- Zaver S, et al. Tracking of oocyte dysmorphisms for ICSI patients may prove relevant to the outcome in subsequent patient cycles. Hum Reprod. 2001;16:2118–23.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Van Blerkom J, Antczak M, Schrader R. The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod. 1997;12:1047–55.CrossRefGoogle Scholar
  18. 18.
    Van Blerkom J, Davis PW, Lee J. ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum Reprod. 1995;10:1047–55.Google Scholar
  19. 19.
    Van Blerkom J. The influence of intrinsic and extrinsic factors on the developmental potential and chromosomal normality of the human oocyte. J Sco Gynecol Invest. 1996;3:3–11.CrossRefGoogle Scholar
  20. 20.
    Yakin K, Balaban B, Isiklar A, et al. Oocyte dysmorphism is not associated with aneuploidy in the developing embryo. Fertil Steril. 2006;88:811–6.CrossRefGoogle Scholar
  21. 21.
    Otsuki J, Nagai Y, Chiba K. Lipofuscin bodies in human oocytes as an indicator of oocyte quality. J Assist Reprod Genet. 2007;24:263–70.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Veeck LL. Atlas of the human oocyte and early conceptus. Baltimore: Williams & Wilkins; 1991. p. 121–66.Google Scholar
  23. 23.
    Xia P. Intracytoplasmic sperm injection. Correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality. Hum Reprod. 1997;12:1750–5.CrossRefGoogle Scholar
  24. 24.
    Marzabadi MR, Sohal RS, Brunk UT. Mechanisms of lipofuscinogenesis: effect of the inhibition of lysosomal proteinases and lipases under varying concentrations of ambient oxygen in cultured rat neonatal myocardial cells. APMIS. 1991;99:416–26.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Iyy GO, Roopsingh R, Kanai S, et al. Leupeptin causes an accumulation of lipofuscin-like substances and other signs of aging in kidneys of young rats: further evidence for the protease inhibitor model of aging. Ann N Y Acad Sci. 1996;786:12–23.CrossRefGoogle Scholar
  26. 26.
    Mitchell M, Armstrong DT, Robker RL, et al. Adipokines: implications for female fertility and obesity. Reproduction. 2005;130:583–97.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Van Blerkom J. Occurrence and developmental consequences of aberrant cellular organizations in meiotically mature human oocytes after exogenous ovarian hyperstimulation. Journal of Electron Micros Tech. 1990;16:324–46.CrossRefGoogle Scholar
  28. 28.
    El Shafie M, Sousa M, Windt ML, et al. Ultrastructure of human oocytes: a transmission electron microscopic view. In: An atlas of the ultrastructure of human oocytes. A guide for assisted reproduction. New York, London: Partheon Publishing; 2000. p. 151–71.Google Scholar
  29. 29.
    Alikani M, Palermo G, Adler A, et al. Intracytoplasmic sperm injection in dysmorphic human oocytes. Zygote. 1995;3:283–8.CrossRefGoogle Scholar
  30. 30.
    Ebner T, Moser M, Sommergruber M, et al. Occurrence and developmental consequences of vacuoles throughout preimplantation development. Fertil Steril. 2005;83:1635–40.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Otsuki J, Okada A, Morimoto K, et al. The relationship between pregnancy outcome and smooth endoplasmic reticulum clusters in MII human oocytes. Hum Reprod. 2004;7:1591–7.CrossRefGoogle Scholar
  32. 32.
    Mateizel I, Van Landuyt L, Tournaye H, et al. Deliveries of normal healthy babies from embryos originating from oocytes showing the presence of smooth endoplasmic reticulum clusters. Hum Reprod. 2013;28(8):2111–7.CrossRefGoogle Scholar
  33. 33.
    Braga D, Setti A, Cassia R, et al. Influence of oocyte dysmorphisms on blastocyst formation. Fertil Steril. 2013;0:1–7.Google Scholar
  34. 34.
    Goud PT, Goud AP, Van Oostveldt P, et al. Presence and dynamic redistribution of type inositol 1,4,5-triphospate receptors in human oocytes and embryos during in-vitro maturation, fertilization and early cleavage divisions. Mol Hum Reprod. 1999;5:441–51.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Carroll J, Jones KT, Whittingham DG. Ca2+ release and the development of Ca2+ release mechanisms during oocyte maturation: a preclude to fertilization. Rev Reprod. 1996;1:137–43.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Jaffe LA, Tesaraki M. Structural changes in the endoplasmic reticulum of starfish oocytes during meiotic maturation and fertilization. Dev Biol. 1994;164:579–87.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Mehlmann LM, Terasaki M, Jaffe LA, et al. Reorganization of the endoplasmic reticulum during meiotic maturation of the mouse oocyte. Dev Biol. 1995;170:607–15.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Ebner T. Prognosis of oocytes showing aggregation of smooth endoplasmic reticulum. Reprod Biomed Online. 2008;16:113–8.CrossRefGoogle Scholar
  39. 39.
    Akarsu C, Caglar G, Vicdan K, et al. Smooth endoplasmic reticulum aggregations in all retrieved oocytes causing recurrent multiple anomalies: case report. Fertil Steril. 2009;92:1496e1–3.CrossRefGoogle Scholar
  40. 40.
    Sa R, Cunha M, Silva J, et al. Ultrastructure of tubular smooth endoplasmic reticulum aggregates in human metaphase II stage oocytes and clinical implications. Fertil Steril. 2011;96:143–9.Google Scholar
  41. 41.
    Epifano O, Liang LF, Familari M, et al. Coordinate expression of the three zona pellucida genes during mouse oogenesis. Development. 1995;121:1947–56.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Shen Y, Stalf T, Mehnert C, et al. High magnitude of light retardation by the zona pellucida is associated with conception cycles. Hum Reprod. 2005;20:1596–606.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hughes DC, Barratt CLR. Identification of the true human orthologue of the mouse ZP1 gene: evidence for greater complexity in the mammalian zona pellucida? Biochim Biophys Acta. 1999;1447:303–6.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lefiévre L, Conner SJ, Salpekar A, et al. Four zona pellucida glycoproteins are expressed in the human. Hum Reprod. 2004;19:1580–6.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Wassarman PM. Zona pellucida glycoproteins. Annu Rev Biochem. 1998;57:415–42.CrossRefGoogle Scholar
  46. 46.
    Rankin T, Talbot P, Lee E, et al. Abnormal zonae pellucida in mice lacking ZP1 results in early embryonic loss. Development. 1999;126:3847–55.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Liu C, Litscher ES, Mortillo S, et al. Targeted disruption of the mZP3 genes results in production of eggs lacking the zona pellucida and infertility in female mice. Proc Natl Acad Sci. 1996;93:5431–6.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Stanger JD, Stevenson K, Lakmaker A, et al. Pregnancy following fertilization of zona-free, coronal cell intact human ova. Hum Reprod. 2001;16:164–7.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ding J, Rana N, Dmowski WP. Intracytoplasmic sperm injection into zona-free human oocytes results in normal fertilization and blastocyst development. Hum Reprod. 1999;14:476–8.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bertrand E, Van den Bergh M, Englert Y. Does zona pellucida thickness influence the fertilization rate? Hum Reprod. 1995;10:1189–93.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Loret de Mola JR, Garside WT, Bussi J, et al. Analysis of the human zona pellucida during culture: correlation with diagnosis and the preovulatory hormonal environment. J Assist Reprod Genetics. 1997;14:332–6.CrossRefGoogle Scholar
  52. 52.
    Pelletier C, Keefe D, Trimarchi JR. Noninvasive polarized light microscopy quantitatively distinguishes the multilaminar structure of the zona pellucida of living human eggs and embryos. Fertil Steril. 2004;81:850–6.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Rama Raju GA, Prakash GJ, Krishna KM, Madan K. Meiotic spindle and zona pellucida characteristics as predictors of embryonic development: a preliminary study using PolScope imaging. Reprod Biomed Online. 2007;14:166–74.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Montag M, Schimming T, Zhou C. Validation of an automatic scoring system for prognostic qualitative zona imaging in human oocytes. Hum Reprod. 2007;22(suppl. 1):i11.Google Scholar
  55. 55.
    Ebner T, Yaman C, Moser M, et al. Prognostic value of first polar body morphology on fertilization rate and embryo quality in intracytoplasmic sperm injection. Hum Reprod. 2000;15:427–30.CrossRefGoogle Scholar
  56. 56.
    Esfandiari N, Ryan EAJ, Gotlieb L, Casper RF. Successful pregnancy following transfer of embryos from oocytes with abnormal zona pellucida and cytoplasm morphology. Reprod Biomed Online. 2005;11:620–3.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Ebner T, Shebl O, Moser M, et al. Developmental fate of ovoid oocytes. Hum Reprod. 2008;23:62–6.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Xia P, Younglai EV. Relationship between steroid concentrations in ovarian follicular fluid and oocyte morphology in patients undergoing intracytoplasmic sperm injection (ICSI) treatment. J Reprod Fertil. 2000;118:229–33.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Suzuki H, Togashi M, Adachi J, et al. Developmental ability of zona-free mouse embryos is influenced by cell association at the 4-cell stage. Biol Reprod. 1995;53:78–83.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Mikkelsen AL, Lindenberg S. Morphology of in-vitro matured oocytes: impact on fertility potential and embryo quality. Hum Reprod. 2001;16:1714–8.CrossRefGoogle Scholar
  61. 61.
    Miao YL, Kikuchi K, Sun QY. Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update. 2009;15:573–85.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Eichenlaub-Ritter U, Shen Y, Tinneberg HR. Manipulation of the oocyte: possible damage to the spindle apparatus. Reprod Biomed Online. 2002;5:117–24.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    De Santis L, Cino I, Rabellotti R, et al. Polar body morphology and spindle imaging as predictors of oocyte quality. Reprod Biomed Online. 2005;11:36–42.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Montag M, Schimming T, Van der Ven H. Spindle imaging in human oocytes: the impact of the meiotic cell cycle. Reprod Biomed Online. 2006;12:442–6.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Otsuki J, Nagai Y. A phase of chromosome aggregation during meiosis in human oocytes. Reprod Biomed Online. 2007;15:191–7.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ortiz ME, Lucero P, Croxatto HB. Postovulatory aging of human ova: II spontaneous division of the first polar body. Gamete Res. 1983;7:269–76.CrossRefGoogle Scholar
  67. 67.
    Ebner T, Moser M, Yaman C, et al. Elective transfer of embryos selected on the basis of first polar body morphology is associated with increased rates of implantation and pregnancy. Fertil Steril. 1999;72:599–603.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ebner T, Moser M, Sommergruber M, et al. First polar body morphology and blastocyst formation rate in ICSI patients. Hum Reprod. 2002;17:2415–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Younis JS, Radin O, Mirsky N, et al. First polar body and nuclear precursor body morphology is related to the ovarian reserve of infertile women. Reprod Biomed Online. 2008;16:851–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Fancsovits P, Tothne Z, Murber A, et al. Correlation between first polar body morphology and further embryo development. Acta Biol Hung. 2006;57:331–8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Ciotti PM, Notarangelo L, Morselli-Labate AM, et al. First polar body morphology before ICSI is not related to embryo quality or pregnancy rate. Hum Reprod. 2004;19:2334–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Van de Velde H, De Vos A, Joris H, et al. Effect of timing of oocyte denudation and microinjection on survival, fertilization and embryo quality after intracytoplasmic sperm injection. Hum Reprod. 1998;13:3160–4.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Verlhac MH, Lefebvre C, Guillaud P, et al. Asymmetric division in mouse oocytes: with or without MOS. Curr Biol. 2000;10:1303–6.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Dandekar P, Talbot P. Perivitelline space of mammalian oocytes: extracellular matrix of unfertilized oocytes and formation of a cortical granule envelope following fertilization. Mol Reprod Dev. 1992;31:135–43.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Dandekar P, Aggeler J, Talbot P. Structure, distribution and composition of the extracellular matrix of human oocytes and cumulus masses. Hum Reprod. 1992;7:391–8.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Sathanathan H. Ultrastructure of the human egg. Hum Cell. 1997;10:21–38.Google Scholar
  77. 77.
    Hassan-Ali H, Hisham-Saleh. A, El-Gezeiry D, et al. Perivitelline space granularity: a sign of human menopausal gonadotrophin overdose in intracytoplasmic sperm injection. Hum Reprod. 1998;13:3425–30.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Farhi J, Nahum H, Weissman A, et al. Coarse granulation in the perivitelline space and IVF-ICSI outcome. J Assist Reprod Genet. 2002;19:545–9.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Balaban B., Ebner T. Morphological selection of gametes and embryos: oocyte. In: A practical guide to selecting gametes & embryos, ed. (2014) M Montag, CRC Press, Taylor&Francis Group, Boca Raton /London/New York, pp. 81–96.CrossRefGoogle Scholar
  80. 80.
    Rienzi L, Gajta G, Ubaldi F. Predictive value of oocyte morphology in human IVF: a systematic review of the literature. Hum Reprod Update. 2011;17:34–45.CrossRefGoogle Scholar
  81. 81.
    Rosenbusch B, Schneider M, Gläser B, et al. Cytogenetic analysis of giant oocytes and zygotes to assess their relevance for the development of digynic triploidy. Hum Reprod. 2002;17:2388–93.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Balakier H, Bouman D, Sojecki A, et al. Morphological and cytogenetic analysis of human giant oocytes and giant embryos. Hum Reprod. 2002;17:2394–401.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Verlinsky Y, Lerner S, Illkevitch N, et al. Is there any predictive value of first polar body morphology for embryo genotype or developmental potential? Reprod Biomed Online. 2003;7:336–41.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.VKE American Hospital of Istanbul, Assisted Reproduction UnitIstanbulTurkey

Personalised recommendations