Advertisement

Culture Media in IVF: Decisions for the Laboratory

  • Jason E. SwainEmail author
Chapter

Abstract

Appreciation of the evolution of IVF culture media, highlighting salient discoveries that have led to the tremendous improvement over just a few short years ago, is instrumental in gaining insight into the complexities of gamete and embryo function. In turn, this knowledge brings understanding to the rationale behind current laboratory practices and aids in the ability to make informed decisions in regard to culture methods. Furthermore, discussion of the impact of culture media on homeostatic regulation of gametes and embryos, focusing on key decisions made within the laboratory such as media type, macromolecule selection, and pH further highlights their delicate nature, the need to minimize stressors, and ultimately provides insight into areas where future improvement can be made to media formulations/culture approaches as we continue to strive for improvement in IVF success rates.

Keywords

Embryo Oocyte Sperm Media pH Protein Osmolarity 

References

  1. 1.
    Steptoe PC, Edwards RG. Reimplantation of a human embryo with subsequent tubal pregnancy. Lancet. 1976;1(7965):880–2.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Steptoe PC, Edwards RG, Purdy JM. Human blastocysts grown in culture. Nature. 1971;229(5280):132–3.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Menezo Y, Testart J, Perrone D. Serum is not necessary in human in vitro fertilization, early embryo culture, and transfer. Fertil Steril. 1984;42(5):750–5.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Quinn P, Kerin J, Warnes G. Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril. 1985;44(4):493–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Biggers JD, Racowsky C. The development of fertilized human ova to the blastocyst stage in KSOM(AA) medium: is a two-step protocol necessary? Reprod Biomed Online. 2002;5(2):133–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Biggers JD, McGinnis LK, Raffin M. Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol Reprod. 2000;63(1):281–93.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Lawitts JA, Biggers JD. Optimization of mouse embryo culture media using simplex methods. J Reprod Fertil. 1991;91(2):543–56.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Summers MC, McGinnis LK, Lawitts JA, Raffin M, Biggers JD. IVF of mouse ova in a simplex optimized medium supplemented with amino acids. Hum Reprod. 2000;15(8):1791–801.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Gardner DK, Lane M, Calderon I, Leeton J. Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril. 1996;65(2):349–53.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril. 2008;90(3):473–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Basile N, Morbeck D, Garcia-Velasco J, Bronet F, Meseguer M. Type of culture media does not affect embryo kinetics: a time-lapse analysis of sibling oocytes. Hum Reprod. 2013;28(3):634–41.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Biggers JD, McGinnis LK, Lawitts JA. One-step versus two-step culture of mouse preimplantation embryos: is there a difference? Hum Reprod. 2005;20(12):3376–84.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Ceschin II, Ribas MH, Ceschin AP, Nishikawa L, Rocha CC, Pic-Taylor A, Baroneza JE. A prospective randomized study comparing two commercially available types of human embryo culture media: G1-PLUS/G2-PLUS sequential medium (Vitrolife) and the GL BLAST sole medium (Ingamed). JBRA Assist Reprod. 2016;20(1):23–6.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Hardarson T, Bungum M, Conaghan J, Meintjes M, Chantilis SJ, Molnar L, Gunnarsson K, Wikland M. Noninferiority, randomized, controlled trial comparing embryo development using media developed for sequential or undisturbed culture in a time-lapse setup. Fertil Steril. 2015;104(6):1452–9.. e1454.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Macklon NS, Pieters MH, Hassan MA, Jeucken PH, Eijkemans MJ, Fauser BC. A prospective randomized comparison of sequential versus monoculture systems for in-vitro human blastocyst development. Hum Reprod. 2002;17(10):2700–5.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Reed ML, Hamic A, Thompson DJ, Caperton CL. Continuous uninterrupted single medium culture without medium renewal versus sequential media culture: a sibling embryo study. Fertil Steril. 2009;92(5):1783–6.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Sfontouris IA, Martins WP, Nastri CO, Viana IG, Navarro PA, Raine-Fenning N, van der Poel S, Rienzi L, Racowsky C. Blastocyst culture using single versus sequential media in clinical IVF: a systematic review and meta-analysis of randomized controlled trials. J Assist Reprod Genet. 2016;33(10):1261–72.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Werner MD, Hong KH, Franasiak JM, Forman EJ, Reda CV, Molinaro TA, Upham KM, Scott RT Jr. Sequential versus Monophasic Media Impact Trial (SuMMIT): a paired randomized controlled trial comparing a sequential media system to a monophasic medium. Fertil Steril. 2016;105(5):1215–21.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. BioEssays. 2002;24(9):845–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14(12):667–72.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gardner DK. Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod Fertil Dev. 2008;20(1):9–18.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Pool TB, Schoolfield J, Han D. Human embryo culture media comparisons. Methods Mol Biol. 2012;912:367–86.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kleijkers SH, Eijssen LM, Coonen E, Derhaag JG, Mantikou E, Jonker MJ, Mastenbroek S, Repping S, Evers JL, Dumoulin JC, van Montfoort AP. Differences in gene expression profiles between human preimplantation embryos cultured in two different IVF culture media. Hum Reprod. 2015;30(10):2303–11.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Salvaing J, Peynot N, Bedhane MN, Veniel S, Pellier E, Boulesteix C, Beaujean N, Daniel N, Duranthon V. Assessment of ‘one-step’ versus ‘sequential’ embryo culture conditions through embryonic genome methylation and hydroxymethylation changes. Hum Reprod. 2016;31(11):2471–83.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dumoulin JC, Land JA, Van Montfoort AP, Nelissen EC, Coonen E, Derhaag JG, Schreurs IL, Dunselman GA, Kester AD, Geraedts JP, Evers JL. Effect of in vitro culture of human embryos on birthweight of newborns. Hum Reprod. 2010;25(3):605–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Kleijkers SH, van Montfoort AP, Smits LJ, Viechtbauer W, Roseboom TJ, Nelissen EC, Coonen E, Derhaag JG, Bastings L, Schreurs IE, Evers JL, Dumoulin JC. IVF culture medium affects post-natal weight in humans during the first 2 years of life. Hum Reprod. 2014;29(4):661–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Kleijkers SH, van Montfoort AP, Smits LJ, Coonen E, Derhaag JG, Evers JL, Dumoulin JC. Age of G-1 PLUS v5 embryo culture medium is inversely associated with birthweight of the newborn. Hum Reprod. 2015;30(6):1352–7.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Nelissen EC, Van Montfoort AP, Coonen E, Derhaag JG, Geraedts JP, Smits LJ, Land JA, Evers JL, Dumoulin JC. Further evidence that culture media affect perinatal outcome: findings after transfer of fresh and cryopreserved embryos. Hum Reprod. 2012;27(7):1966–76.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Nelissen EC, Van Montfoort AP, Smits LJ, Menheere PP, Evers JL, Coonen E, Derhaag JG, Peeters LL, Coumans AB, Dumoulin JC. IVF culture medium affects human intrauterine growth as early as the second trimester of pregnancy. Hum Reprod. 2013;28(8):2067–74.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    De Vos A, Janssens R, Van de Velde H, Haentjens P, Bonduelle M, Tournaye H, Verheyen G. The type of culture medium and the duration of in vitro culture do not influence birthweight of ART singletons. Hum Reprod. 2015;30(1):20–7.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Maas K, Galkina E, Thornton K, Penzias AS, Sakkas D. No change in live birthweight of IVF singleton deliveries over an 18-year period despite significant clinical and laboratory changes. Hum Reprod. 2016;31(9):1987–96.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Devreker F, Hardy K, Van den Bergh M, Winston J, Biramane J, Englert Y. Noninvasive assessment of glucose and pyruvate uptake by human embryos after intracytoplasmic sperm injection and during the formation of pronuclei. Fertil Steril. 2000;73(5):947–54.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Gardner D, Lane M, Batt P. Uptake and metabolism of pyruvate and glucose by individual sheep preattachment embryos developed in vivo. Mol Reprod Dev. 1993;36(3):313–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Gott A, Hardy K, Winston R, Leese H. Non-invasive measurement of pyruvate and glucose uptake and lactate production by single human preimplantation embryos. Hum Reprod. 1990;5(1):104–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Hardy K, Hooper M, Handyside A, Rutherford A, Winston R, Leese H. Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Hum Reprod. 1989;4(2):188–91.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Lane M, Gardner DK. Inhibiting 3-phosphoglycerate kinase by EDTA stimulates the development of the cleavage stage mouse embryo. Mol Reprod Dev. 2001;60(2):233–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Ben-Yosef D, Amit A, Azem F, Schwartz T, Cohen T, Mei-Raz N, Carmon A, Lessing JB, Yaron Y. Prospective randomized comparison of two embryo culture systems: P1 medium by Irvine Scientific and the Cook IVF Medium. J Assist Reprod Genet. 2004;21(8):291–5.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Carrillo AJ, Lane B, Pridman DD, Risch PP, Pool TB, Silverman IH, Cook CL. Improved clinical outcomes for in vitro fertilization with delay of embryo transfer from 48 to 72 hours after oocyte retrieval: use of glucose- and phosphate-free media. Fertil Steril. 1998;69(2):329–34.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Coates A, Rutherford AJ, Hunter H, Leese HJ. Glucose-free medium in human in vitro fertilization and embryo transfer: a large-scale, prospective, randomized clinical trial. Fertil Steril. 1999;72(2):229–32.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Conaghan J, Handyside AH, Winston RM, Leese HJ. Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J Reprod Fertil. 1993;99(1):87–95.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Whitten WK. Culture of tubal ova. Nature. 1957;179(4569):1081–2.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci U S A. 1967;58(2):560–7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Brinster R. Studies on the development of mouse embryos in vitro. II. The effect of energy source. J Exp Zool. 1965;158:59–68.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Brinster RL. Studies on the development of mouse embryos in vitro. I. The effect of osmolarity and hydrogen ion concentration. J Exp Zool. 1965;158:49–57.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Gardner DK, Leese HJ. Non-invasive measurement of nutrient uptake by single cultured pre-implantation mouse embryos. Hum Reprod. 1986;1(1):25–7.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Leese HJ, Hooper MA, Edwards RG, Ashwood-Smith MJ. Uptake of pyruvate by early human embryos determined by a non-invasive technique. Hum Reprod. 1986;1(3):181–2.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Lane M, Gardner DK. Lactate regulates pyruvate uptake and metabolism in the preimplantation mouse embryo. Biol Reprod. 2000;62(1):16–22.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Lane M, Gardner DK. Regulation of ionic homeostasis by mammalian embryos. Semin Reprod Med. 2000;18(2):195–204.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Wales RG, Whittingham DG. The metabolism of specifically labelled lactate and pyruvate by two-cell mouse embryos. J Reprod Fertil. 1973;33(2):207–22.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Edwards LJ, Williams DA, Gardner DK. Intracellular pH of the preimplantation mouse embryo: effects of extracellular pH and weak acids. Mol Reprod Dev. 1998;50(4):434–42.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Gibb CA, Poronnik P, Day ML, Cook DI. Control of cytosolic pH in two-cell mouse embryos: roles of H(+)-lactate cotransport and Na+/H+ exchange. Am J Phys. 1997;273(2 Pt 1):C404–19.CrossRefGoogle Scholar
  52. 52.
    Gardner DK, Lane M. Culture systems for human embryos. In: Gardner DK, Weissman A, Howles C, Zeev S, editors. Textbook of assisted reproductive technologies. Boca Raton: Informa UK Ltd; 2009. p. 219–40.Google Scholar
  53. 53.
    McKiernan SH, Clayton MK, Bavister BD. Analysis of stimulatory and inhibitory amino acids for development of hamster one-cell embryos in vitro. Mol Reprod Dev. 1995;42(2):188–99.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Lane M, Gardner DK. Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil. 1997;109(1):153–64.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ho Y, Wigglesworth K, Eppig JJ, Schultz RM. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev. 1995;41(2):232–8.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Gardner DK, Lane M. Alleviation of the ‘2-cell block’ and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum Reprod. 1996;11(12):2703–12.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Gardner DK, Lane M. Amino acids and ammonium regulate mouse embryo development in culture. Biol Reprod. 1993;48(2):377–85.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Lane M, Gardner DK. Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J Reprod Fertil. 1994;102(2):305–12.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lane M, Gardner DK. Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol Reprod. 2003;69(4):1109–17.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Lane M, Hooper K, Gardner DK. Effect of essential amino acids on mouse embryo viability and ammonium production. J Assist Reprod Genet. 2001;18(9):519–25.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Zander DL, Thompson JG, Lane M. Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages. Biol Reprod. 2006;74(2):288–94.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Biggers JD, McGinnis LK, Lawitts JA. Enhanced effect of glycyl-L-glutamine on mouse preimplantation embryos in vitro. Reprod Biomed Online. 2004;9(1):59–69.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Biggers JD, McGinnis LK, Summers MC. Discrepancies between the effects of glutamine in cultures of preimplantation mouse embryos. Reprod Biomed Online. 2004;9(1):70–3.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Summers MC, McGinnis LK, Lawitts JA, Biggers JD. Mouse embryo development following IVF in media containing either L-glutamine or glycyl-L-glutamine. Hum Reprod. 2005;20(5):1364–71.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Moravek M, Fisseha S, Swain JE. Dipeptide forms of glycine support mouse preimplantation embryo development in vitro and provide protection against high media osmolality. J Assist Reprod Genet. 2012;29(3):283–90.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Swain J. Dipeptide glutamine functions as an organic osmolyte in mouse preimplantations embryos but not not support blastocyst hatching at the same rate as individual component amino acids. Fertil Steril. 2015;104(3):e313.CrossRefGoogle Scholar
  67. 67.
    Baltz JM, Tartia AP. Cell volume regulation in oocytes and early embryos: connecting physiology to successful culture media. Hum Reprod Update. 2010;16:166–76.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Bavister BD, Kinsey DL, Lane M, Gardner DK. Recombinant human albumin supports hamster in-vitro fertilization. Hum Reprod. 2003;18(1):113–6.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Bungum M, Humaidan P, Bungum L. Recombinant human albumin as protein source in culture media used for IVF: a prospective randomized study. Reprod Biomed Online. 2002;4(3):233–6.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Meintjes M, Chantilis SJ, Ward DC, Douglas JD, Rodriguez AJ, Guerami AR, Bookout DM, Barnett BD, Madden JD. A randomized controlled study of human serum albumin and serum substitute supplement as protein supplements for IVF culture and the effect on live birth rates. Hum Reprod. 2009;24(4):782–9.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Pool TB, Martin JE. High continuing pregnancy rates after in vitro fertilization-embryo transfer using medium supplemented with a plasma protein fraction containing alpha- and beta-globulins. Fertil Steril. 1994;61(4):714–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Pool T, Atiee S, Martin JE. Oocyte and embryo culture:basic concepts and recent advances. Infertil Reprod Med Clin North Am. 1998;9(2):181–203.Google Scholar
  73. 73.
    Gardner DK, Rodriegez-Martinez H, Lane M. Fetal development after transfer is increased by replacing protein with the glycosaminoglycan hyaluronan for mouse embryo culture and transfer. Hum Reprod. 1999;14(10):2575–80.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Lane M, Maybach JM, Hooper K, Hasler JF, Gardner DK. Cryo-survival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan. Mol Reprod Dev. 2003;64(1):70–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Palasz AT, Rodriguez-Martinez H, Beltran-Brena P, Perez-Garnelo S, Martinez MF, Gutierrez-Adan A, De la Fuente J. Effects of hyaluronan, BSA, and serum on bovine embryo in vitro development, ultrastructure, and gene expression patterns. Mol Reprod Dev. 2006;73(12):1503–11.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lawitts JA, Biggers JD. Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol Reprod Dev. 1992;31(3):189–94.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Richards T, Wang F, Liu L, Baltz JM. Rescue of postcompaction stage mouse embryo development from hypertonicity by amino acid transporter substrates that may function as organic osmolytes. Biol Reprod. 2010;82:769–77.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Van Winkle LJ, Haghighat N, Campione AL. Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J Exp Zool. 1990;253(2):215–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Swain J, Cabrera L, Xu X, Smith G. Environmental factors and manipulations during preparation influence embryo culture media osmolality. Fertil Steril. 2010;94(Suppl 4):s32.CrossRefGoogle Scholar
  80. 80.
    Souza FF, Chirinea VH, Martins MI, Lopes MD. Osteopontin in seminal plasma and sperm membrane of dogs. Reprod Domest Anim. 2009;44(Suppl 2):283–6.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Swain J, Schoolcraft W, Bossert N, Batcheller A. Media osmolality changes over 7 days following culture in a non-humidifed benchtop incubator. Fertil Steril. 2016;106(3):e362.CrossRefGoogle Scholar
  82. 82.
    Moreno-Cuevas JE, Sirbasku DA. Estrogen mitogenic action. III. Is phenol red a “red herring”? In Vitro Cell Dev Biol Anim. 2000;36(7):447–64.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Nakayama T, Noda Y, Goto Y, Mori T. Effects of visible light and other environmental factors on the production of oxygen radicals by hamster embryos. Theriogenology. 1994;41(2):499–510.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kastrop PM, de Graaf-Miltenburg LA, Gutknecht DR, Weima SM. Microbial contamination of embryo cultures in an ART laboratory: sources and management. Hum Reprod. 2007;22(8):2243–8.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Magli MC, Gianaroli L, Fiorentino A, Ferraretti AP, Fortini D, Panzella S. Improved cleavage rate of human embryos cultured in antibiotic-free medium. Hum Reprod. 1996;11(7):1520–4.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Zhou H, McKiernan SH, Ji W, Bavister BD. Effect of antibiotics on development in vitro of hamster pronucleate ova. Theriogenology. 2000;54(7):999–1006.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Liu J, Tang S, Xu W, Wang Y, Yin B, Zhang Y. Detrimental effects of antibiotics on mouse embryos in chromatin integrity, apoptosis and expression of zygotically activated genes. Zygote. 2011;19(2):137–45.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Pool T. Blastocyst development in culture: the role of macromolecules. In: Gardner DK, Lane M, editors. ART and the human blastocyst. New York: Springer; 2001. p. 105–17.CrossRefGoogle Scholar
  89. 89.
    McKiernan SH, Bavister BD. Different lots of bovine serum albumin inhibit or stimulate in vitro development of hamster embryos. In Vitro Cell Dev Biol. 1992;28A(3 Pt 1):154–6.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Meintjes M. Media composition: macromolecules and embryo growth. Methods Mol Biol. 2012;912:107–27.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Ben-Yosef D, Yovel I, Schwartz T, Azem F, Lessing JB, Amit A. Increasing synthetic serum substitute (SSS) concentrations in P1 glucose/phosphate-free medium improves implantation rate: a comparative study. J Assist Reprod Genet. 2001;18(11):588–92.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bontekoe S, Heineman MJ, Johnson N, Blake D. Adherence compounds in embryo transfer media for assisted reproductive technologies. Cochrane Database Syst Rev. 2014;2:CD007421.Google Scholar
  93. 93.
    Check JH, Summers-Chase D, Yuan W, Swenson K, Horwath D, Press M. “Embryo glue” does not seem to improve chances of subsequent pregnancy in refractory in vitro fertilization cases. Clin Exp Obstet Gynecol. 2012;39(1):11–2.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Chun S, Seo JE, Rim YJ, Joo JH, Lee YC, Koo YH. Efficacy of hyaluronan-rich transfer medium on implantation and pregnancy rates in fresh and frozen-thawed blastocyst transfers in Korean women with previous implantation failure. Obstet Gynecol Sci. 2016;59(3):201–7.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Fancsovits P, Lehner A, Murber A, Kaszas Z, Rigo J, Urbancsek J. Effect of hyaluronan-enriched embryo transfer medium on IVF outcome: a prospective randomized clinical trial. Arch Gynecol Obstet. 2015;291(5):1173–9.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Hambiliki F, Ljunger E, Karlstrom PO, Stavreus-Evers A. Hyaluronan-enriched transfer medium in cleavage-stage frozen-thawed embryo transfers increases implantation rate without improvement of delivery rate. Fertil Steril. 2010;94(5):1669–73.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Hazlett WD, Meyer LR, Nasta TE, Mangan PA, Karande VC. Impact of EmbryoGlue as the embryo transfer medium. Fertil Steril. 2008;90(1):214–6.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Nakagawa K, Takahashi C, Nishi Y, Jyuen H, Sugiyama R, Kuribayashi Y, Sugiyama R. Hyaluronan-enriched transfer medium improves outcome in patients with multiple embryo transfer failures. J Assist Reprod Genet. 2012;29(7):679–85.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Singh N, Gupta M, Kriplani A, Vanamail P. Role of Embryo Glue as a transfer medium in the outcome of fresh non-donor in-vitro fertilization cycles. J Hum Reprod Sci. 2015;8(4):214–7.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Urman B, Yakin K, Ata B, Isiklar A, Balaban B. Effect of hyaluronan-enriched transfer medium on implantation and pregnancy rates after day 3 and day 5 embryo transfers: a prospective randomized study. Fertil Steril. 2008;90(3):604–12.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Sun B, Yu W, Wang F, Song W, Jin H, Sun Y. Effects of group culture on the development of discarded human embryos and the construction of human embryonic stem cell lines. J Assist Reprod Genet. 2014;31(10):1369–76.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Dale B, Menezo Y, Cohen J, DiMatteo L, Wilding M. Intracellular pH regulation in the human oocyte. Hum Reprod. 1998;13(4):964–70.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Erdogan S, FitzHarris G, Tartia AP, Baltz JM. Mechanisms regulating intracellular pH are activated during growth of the mouse oocyte coincident with acquisition of meiotic competence. Dev Biol. 2005;286(1):352–60.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Fitzharris G, Baltz J. Regulation of intracellular pH during oocyte growth and maturation in mammals. Reproduction. 2009;138:619–27.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Lane M, Lyons EA, Bavister BD. Cryopreservation reduces the ability of hamster 2-cell embryos to regulate intracellular pH. Hum Reprod. 2000;15(2):389–94.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Phillips KP, Petrunewich MA, Collins JL, Baltz JM. The intracellular pH-regulatory HCO3-/Cl- exchanger in the mouse oocyte is inactivated during first meiotic metaphase and reactivated after egg activation via the MAP kinase pathway. Mol Biol Cell. 2002;13(11):3800–10.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Squirrell JM, Lane M, Bavister BD. Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol Reprod. 2001;64(6):1845–54.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Zander-Fox D, Mitchell M, Thompson JG, Lane M. Repercussions of a transient decrease in pH on embryo viability and subsequent fetal development. Reprod Fertil Dev. 2008;20:84.CrossRefGoogle Scholar
  109. 109.
    John DP, Kiessling AA. Improved pronuclear mouse embryo development over an extended pH range in Ham’s F-10 medium without protein. Fertil Steril. 1988;49(1):150–5.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Lane M, Baltz JM, Bavister BD. Regulation of intracellular pH in hamster preimplantation embryos by the sodium hydrogen (Na+/H+) antiporter. Biol Reprod. 1998;59(6):1483–90.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Lane M, Bavister BD. Regulation of intracellular pH in bovine oocytes and cleavage stage embryos. Mol Reprod Dev. 1999;54(4):396–401.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Lane M, Baltz JM, Bavister BD. Na+/H+ antiporter activity in hamster embryos is activated during fertilization. Dev Biol. 1999;208(1):244–52.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Leclerc C, Becker D, Buehr M, Warner A. Low intracellular pH is involved in the early embryonic death of DDK mouse eggs fertilized by alien sperm. Dev Dyn. 1994;200(3):257–67.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Zhao Y, Baltz JM. Bicarbonate/chloride exchange and intracellular pH throughout preimplantation mouse embryo development. Am J Phys. 1996;271(5 Pt 1):C1512–20.CrossRefGoogle Scholar
  115. 115.
    Zhao Y, Chauvet PJ, Alper SL, Baltz JM. Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo. J Biol Chem. 1995;270(41):24428–34.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Swain JE. Is there an optimal pH for culture media used in clinical IVF? Hum Reprod Update. 2012;18(3):333–9.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Swain JE. Media composition: pH and buffers. Methods Mol Biol. 2012;912:161–75.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Hershlag A, Feng H. The effect of CO2 concentration and pH on the in vitro development of mouse embryos. Fertil Mag. 2001;4:21–2.Google Scholar
  119. 119.
    Summers MC, Biggers JD. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update. 2003;9(6):557–82.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Gardner DK, Hamilton R, McCallie B, Schoolcraft WB, Katz-Jaffe MG. Human and mouse embryonic development, metabolism and gene expression are altered by an ammonium gradient in vitro. Reproduction. 2013;146(1):49–61.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Hentemann M, Mousavi K, Bertheussen K. Differential pH in embryo culture. Fertil Steril. 2011;95(4):1291–4.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Swain J. Embryo culture and pH. Fertil Steril. 2011;95(8):e67; author reply e68.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Swain JE. Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online. 2010;21(1):6–16.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Swain J, Pool T. Supplementation of sequential embryo culture medium with synthetic organic buffers supports development of mouse embryos in an elevated CO2 environment. RBM Online. 2009;16(suppl 4).Google Scholar
  125. 125.
    Swain JE, Pool TB. New pH-buffering system for media utilized during gamete and embryo manipulations for assisted reproduction. Reprod Biomed Online. 2009;18(6):799–810.CrossRefGoogle Scholar
  126. 126.
    Will MA, Clark NA, Swain JE. Biological pH buffers in IVF: help or hindrance to success. J Assist Reprod Genet. 2011;28(8):711–24.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Steel T, Conaghan J. pH equilibration dynamics of culture medium under oil. Fertil Steril. 2008;89(suppl 2):s27.CrossRefGoogle Scholar
  128. 128.
    Barnett DK, Bavister BD. Inhibitory effect of glucose and phosphate on the second cleavage division of hamster embryos: is it linked to metabolism? Hum Reprod. 1996;11(1):177–83.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Barnett DK, Clayton MK, Kimura J, Bavister BD. Glucose and phosphate toxicity in hamster preimplantation embryos involves disruption of cellular organization, including distribution of active mitochondria. Mol Reprod Dev. 1997;48(2):227–37.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Lane M, Ludwig TE, Bavister BD. Phosphate induced developmental arrest of hamster two-cell embryos is associated with disrupted ionic homeostasis. Mol Reprod Dev. 1999;54(4):410–7.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Escriba MJ, Silvestre MA, Saeed AM, Garcia-Ximenez F. Comparison of the effect of two different handling media on rabbit zygote developmental ability. Reprod Nutr Dev. 2001;41(2):181–6.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Farrell PS, Bavister BD. Short-term exposure of two-cell hamster embryos to collection media is detrimental to viability. Biol Reprod. 1984;31(1):109–14.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Palasz AT, Brena PB, De la Fuente J, Gutierrez-Adan A. The effect of different zwitterionic buffers and PBS used for out-of-incubator procedures during standard in vitro embryo production on development, morphology and gene expression of bovine embryos. Theriogenology. 2008;70(9):1461–70.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Ferguson WJ, Braunschweiger KI, Braunschweiger WR, Smith JR, McCormick JJ, Wasmann CC, Jarvis NP, Bell DH, Good NE. Hydrogen ion buffers for biological research. Anal Biochem. 1980;104(2):300–10.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Good NE, Izawa S. Hydrogen ion buffers. Methods Enzymol. 1972;24:53–68.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RM. Hydrogen ion buffers for biological research. Biochemistry. 1966;5(2):467–77.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Iwasaki T, Kimura E, Totsukawa K. Studies on a chemically defined medium for in vitro culture of in vitro matured and fertilized porcine oocytes. Theriogenology. 1999;51(4):709–20.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Morgia F, Torti M, Montigiani M, Piscitelli C, Giallonardo A, Schimberni M, Giannini P, Sbracia M. Use of a medium buffered with N-hydroxyethylpiperazine-N-ethanesulfonate (HEPES) in intracytoplasmic sperm injection procedures is detrimental to the outcome of in vitro fertilization. Fertil Steril. 2006;85(5):1415–9.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Lepe-Zuniga JL, Zigler JS Jr, Gery I. Toxicity of light-exposed Hepes media. J Immunol Methods. 1987;103(1):145.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Zigler JS Jr, Lepe-Zuniga JL, Vistica B, Gery I. Analysis of the cytotoxic effects of light-exposed HEPES-containing culture medium. In Vitro Cell Dev Biol. 1985;21(5):282–7.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Butler JE, Lechene C, Biggers JD. Noninvasive measurement of glucose uptake by two populations of murine embryos. Biol Reprod. 1988;39(4):779–86.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Byrd SR, Flores-Foxworth G, Applewhite AA, Westhusin ME. In vitro maturation of ovine oocytes in a portable incubator. Theriogenology. 1997;47(4):857–64.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Downs SM, Mastropolo AM. Culture conditions affect meiotic regulation in cumulus cell-enclosed mouse oocytes. Mol Reprod Dev. 1997;46(4):551–66.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Geshi M, Yonai M, Sakaguchi M, Nagai T. Improvement of in vitro co-culture systems for bovine embryos using a low concentration of carbon dioxide and medium supplemented with beta-mercaptoethanol. Theriogenology. 1999;51(3):551–8.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Behr BR, Stratton CJ, Foote WD, Knutzen V, Sher G. In vitro fertilization (IVF) of mouse ova in HEPES-buffered culture media. J In Vitro Fert Embryo Transf. 1990;7(1):9–15.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Bhattacharyya A, Yanagimachi R. Synthetic organic pH buffers can support fertilization of guinea pig eggs, but not as efficiently as bicarbonate buffer. Gamete Res. 1988;19(2):123–9.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Hagen DR, Prather RS, Sims MM, First NL. Development of one-cell porcine embryos to the blastocyst stage in simple media. J Anim Sci. 1991;69(3):1147–50.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Lee MA, Storey BT. Bicarbonate is essential for fertilization of mouse eggs: mouse sperm require it to undergo the acrosome reaction. Biol Reprod. 1986;34(2):349–56.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Ali J, Whitten WK, Shelton JN. Effect of culture systems on mouse early embryo development. Hum Reprod. 1993;8(7):1110–4.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Liu Z, Foote RH, Simkin ME. Effect of amino acids and alpha-amanitin on the development of rabbit embryos in modified protein-free KSOM with HEPES. Mol Reprod Dev. 1996;45(2):157–62.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Mahadevan MM, Fleetham J, Church RB, Taylor PJ. Growth of mouse embryos in bicarbonate media buffered by carbon dioxide, hepes, or phosphate. J In Vitro Fert Embryo Transf. 1986;3(5):304–8.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Ozawa M, Nagai T, Kaneko H, Noguchi J, Ohnuma K, Kikuchi K. Successful pig embryonic development in vitro outside a CO2 gas-regulated incubator: effects of pH and osmolality. Theriogenology. 2006;65(4):860–9.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Graves CN, Biggers JD. Carbon dioxide fixation by mouse embryos prior to implantation. Science. 1970;167(924):1506–8.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Quinn P, Wales RG. Fixation of carbon dioxide by pre-implantation mouse embryos in vitro and the activities of enzymes involved in the process. Aust J Biol Sci. 1971;24(6):1277–90.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Quinn P, Wales RG. Fixation of carbon dioxide by preimplantation rabbit embryos in vitro. J Reprod Fertil. 1974;36(1):29–39.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Phillips KP, Leveille MC, Claman P, Baltz JM. Intracellular pH regulation in human preimplantation embryos. Hum Reprod. 2000;15(4):896–904.CrossRefGoogle Scholar
  157. 157.
    Eagle H. Buffer combinations for mammalian cell culture. Science. 1971;174(8):500–3.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Hashimoto S, Nishihara T, Murata Y, Oku H, Nakaoka Y, Fukuda A, Morimoto Y. Medium without ammonium accumulation supports the developmental competence of human embryos. J Reprod Dev. 2008;54(5):370–4.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Bunton CA. Oxidation of α-diketones and α-keto acids by hydrogen peroxide. Nature. 1949;163:144.CrossRefGoogle Scholar
  160. 160.
    Morales H, Tilquin P, Rees JF, Massip A, Dessy F, Van Langendonckt A. Pyruvate prevents peroxide-induced injury of in vitro preimplantation bovine embryos. Mol Reprod Dev. 1999;52(2):149–57.PubMedCrossRefGoogle Scholar
  161. 161.
    O’Fallon JV, Wright RW. Pyruvate revisited: a non-metabolic role for pyruvate in preimplantation embryo development. Theriogenology. 1995;43:288.CrossRefGoogle Scholar
  162. 162.
    Orsi NM, Leese HJ. Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Mol Reprod Dev. 2001;59(1):44–53.PubMedCrossRefGoogle Scholar
  163. 163.
    Montgomery CM, Webb JL. Metabolic studies on heart mitochondria. J Biol Chem. 1955:359–68.Google Scholar
  164. 164.
    Montgomery CM, Webb JL. Metabolic studies on heart mitochondria. II. The inhibitory action of parapyruvate on the tricarboxylic acid cycle. J Biol Chem. 1956;221(1):359–68.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Wales R, DG W. Decomposition of sodium pyruvate in culture media stored at 5 C and its effects on the development of the preimplanatation mouse embryo. J Reprod Fertil. 1971;24:126.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Dave SH, Tilstra JS, Matsuoka K, Li F, Demarco RA, Beer-Stolz D, Sepulveda AR, Fink MP, Lotze MT, Plevy SE. Ethyl pyruvate decreases HMGB1 release and ameliorates murine colitis. J Leukoc Biol. 2009;86:633–43.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Di Paola R, Mazzon E, Genovese T, Crisafulli C, Bramanti P, Caminiti R, Esposito E, Fink MP, Cuzzocrea S. Ethyl pyruvate reduces the development of zymosan-induced generalized inflammation in mice. Crit Care Med. 2009;37(1):270–82.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Kim JB, Yu YM, Kim SW, Lee JK. Anti-inflammatory mechanism is involved in ethyl pyruvate-mediated efficacious neuroprotection in the postischemic brain. Brain Res. 2005;1060(1–2):188–92.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Lin RY, Vera JC, Chaganti RS, Golde DW. Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. J Biol Chem. 1998;273(44):28959–65.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Malaisse WJ, Jijakli H, Ulusoy S, Cook L, Best L, Vinambres C, Villanueva-Penacarrillo ML, Valverde I, Sener A. Insulinotropic action of methyl pyruvate: secretory, cationic, and biosynthetic aspects. Arch Biochem Biophys. 1996;335(2):229–44.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Rocheleau JV, Head WS, Piston DW. Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response. J Biol Chem. 2004;279(30):31780–7.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Sims CA, Wattanasirichaigoon S, Menconi MJ, Ajami AM, Fink MP. Ringer’s ethyl pyruvate solution ameliorates ischemia/reperfusion-induced intestinal mucosal injury in rats. Crit Care Med. 2001;29(8):1513–8.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Varma SD, Devamanoharan PS, Ali AH. Prevention of intracellular oxidative stress to lens by pyruvate and its ester. Free Radic Res. 1998;28(2):131–5.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Yang R, Shaufl AL, Killeen ME, Fink MP. Ethyl pyruvate ameliorates liver injury secondary to severe acute pancreatitis. J Surg Res. 2009;153(2):302–9.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Zeng J, Liu J, Yang GY, Kelly MJ, James TL, Litt L. Exogenous ethyl pyruvate versus pyruvate during metabolic recovery after oxidative stress in neonatal rat cerebrocortical slices. Anesthesiology. 2007;107(4):630–40.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Zeng J, Yang GY, Ying W, Kelly M, Hirai K, James TL, Swanson RA, Litt L. Pyruvate improves recovery after PARP-1-associated energy failure induced by oxidative stress in neonatal rat cerebrocortical slices. J Cereb Blood Flow Metab. 2007;27(2):304–15.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Swain JE, Pool TB. Supplementation of culture media with esterfied forms of pyruvate improves mouse embryo development. In: Proceedings from the ASRM annual meeting, San Francisco, 2008.Google Scholar
  178. 178.
    Silva E, Becker J, Herrick J, Lyons S, Broeckling C, Barfield J, Schoolcraft W, Swain JK, Krisher RL. Replacment of sodium pyruvate with ethyl pyruvate promotes zygotic cleavage and inner cell mass development during in vitro culture of embryos from females of advanced maternal age. Fertil Steril. 2016;106(3):e361.CrossRefGoogle Scholar
  179. 179.
    Eftekhar M, Aflatoonian A, Mohammadian F, Tabibnejad N. Transfer of blastocysts derived from frozen-thawed cleavage stage embryos improved ongoing pregnancy. Arch Gynecol Obstet. 2012;286(2):511–6.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Sanches BV, Pontes JH, Basso AC, Ferreira CR, Perecin F, Seneda MM. Comparison of synthetic oviductal fluid and G1/G2 medium under low-1 oxygen atmosphere on embryo production and pregnancy rates in Nelore (Bos indicus) cattle. Reprod Domest Anim. 2013;48(1):e7–9.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Swain JE, Smith GD. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum Reprod Update. 2011;17(4):541–57.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Swain J, Pool T, Takayama S, Smith G. Microfluidics in ART: current progress and future directions. In: Gardner D, Weissman A, Howles C, Zeev S, editors. Textbook of assisted reproductive technologies. Boca Raton: Informa Healthcare; 2009. p. 843–58.Google Scholar
  183. 183.
    Swain JE, Lai D, Takayama S, Smith GD. Thinking big by thinking small: application of microfluidic technology to improve ART. Lab Chip. 2013;13(7):1213–24.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Vergouw CG, Kostelijk EH, Doejaaren E, Hompes PG, Lambalk CB, Schats R. The influence of the type of embryo culture medium on neonatal birthweight after single embryo transfer in IVF. Hum Reprod. 2012;27(9):2619–26.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Angle M. Using two concurrent sequential culture media improves pregnancy outcomes. Clin Embryologist. 2006;9(1):5–11.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CCRM IVF NetworkLone TreeUSA

Personalised recommendations