Abstract
A proof system can be used by a prover to demonstrate to one or more verifiers that a statement is true. Proof systems can be interactive where the prover and verifier exchange many messages, or non-interactive where the prover sends a single convincing proof to the verifier. Proof systems are widely used in cryptographic protocols to verify that a party is following a protocol correctly and is not cheating.
A particular type of proof systems are zero-knowledge proof systems, where the prover convinces the verifier that the statement is true but does not leak any other information. Zero-knowledge proofs are useful when the prover has private data that should not be leaked but needs to demonstrate a certain fact about this data. The prover may for instance want to show it is following a protocol correctly but not want to reveal its own input.
In these lecture notes we give an overview of some central techniques behind the construction of efficient zero-knowledge proofs.
Keywords
- Proof System
- Discrete Logarithm
- Graph Isomorphism
- Commitment Scheme
- Arithmetic Circuit
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options












References
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (2012)
Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS and proof-carrying data. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing - STOC 2013, p. 111 (2013)
Blum, M., Feldman, P., Micali, S.: Non-interactive Zero Knowledge and Its Applications (Extended Abstract), pp. 103–112. MIT (1988)
Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)
Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in computationally sound protocols? In: Proceedings of 38th Annual Symposium on Foundations of Computer Science, pp. 374–383. IEEE (1997)
Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, 1–21 November 1993
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014)
Bellare, M., Yung, M.: Certifying permutations: noninteractive zero-knowledge based on any trapdoor permutation. J. Cryptol. 9(3), 149–166 (1996)
Cramer, R., Damgård, I.B.: Zero-knowledge proofs for finite field arithmetic or: can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 424–441. Springer, Heidelberg (1998)
Cramer, R., Damgård, I.B., Schoenmakers, B.: Proof of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)
Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology. Revisited, p. 31 (2000)
Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untraceability. J. Cryptol. 1(1), 65–75 (1988)
Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature cards. In: ICS, vol. 10, pp. 310–331 (2010)
Damgård, I.B.: On the existence of bit commitment schemes and zero-knowledge proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 17–27. Springer, Heidelberg (1990)
Damgård, I.B.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)
Damgård, I.B., Goldreich, O., Okamoto, T., Wigderson, A.: Honest verifier vs dishonest verifier in public coin zero-knowledge proofs. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 325–338. Springer, Heidelberg (1995)
El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)
Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)
Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.: Using fully homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs. J. Cryptol. 28(4), 1–22 (2015)
Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)
Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM J. Comput. 25(1), 169–192 (1996)
Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: Proceedings of 44th Annual IEEE Symposium on Foundations of Computer Science, 2003 (2003)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pp. 291–304. ACM (1985)
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM (JACM) 38(3), 690–728 (1991)
Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols using signatures. J. Cryptol. 19(2), 169–209 (2006)
Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. J. Cryptol. 27(3), 506–543 (2014)
Goldreich, O.: The Foundations of Cryptography. Basic Techniques, vol. 1. Cambridge University Press, Cambridge (2001)
Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-knowledge. J. ACM (JACM) 59, 11 (2012)
Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009)
Groth, J.: Short non-interactive zero-knowledge proofs. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg (2010)
Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing (2011)
Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof system for NP with general assumptions. J. Cryptol. 11, 1–27 (1998)
Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012)
Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252, May 2013
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Bootle, J., Cerulli, A., Chaidos, P., Groth, J. (2016). Efficient Zero-Knowledge Proof Systems. In: Aldini, A., Lopez, J., Martinelli, F. (eds) Foundations of Security Analysis and Design VIII. FOSAD FOSAD 2016 2015. Lecture Notes in Computer Science(), vol 9808. Springer, Cham. https://doi.org/10.1007/978-3-319-43005-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-43005-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-43004-1
Online ISBN: 978-3-319-43005-8
eBook Packages: Computer ScienceComputer Science (R0)