Skip to main content

Efficient Zero-Knowledge Proof Systems

Part of the Lecture Notes in Computer Science book series (LNSC,volume 9808)

Abstract

A proof system can be used by a prover to demonstrate to one or more verifiers that a statement is true. Proof systems can be interactive where the prover and verifier exchange many messages, or non-interactive where the prover sends a single convincing proof to the verifier. Proof systems are widely used in cryptographic protocols to verify that a party is following a protocol correctly and is not cheating.

A particular type of proof systems are zero-knowledge proof systems, where the prover convinces the verifier that the statement is true but does not leak any other information. Zero-knowledge proofs are useful when the prover has private data that should not be leaked but needs to demonstrate a certain fact about this data. The prover may for instance want to show it is following a protocol correctly but not want to reveal its own input.

In these lecture notes we give an overview of some central techniques behind the construction of efficient zero-knowledge proofs.

Keywords

  • Proof System
  • Discrete Logarithm
  • Graph Isomorphism
  • Commitment Scheme
  • Arithmetic Circuit

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-43005-8_1
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-43005-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   49.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

References

  1. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (2012)

    Google Scholar 

  2. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and bootstrapping for SNARKS and proof-carrying data. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing - STOC 2013, p. 111 (2013)

    Google Scholar 

  3. Blum, M., Feldman, P., Micali, S.: Non-interactive Zero Knowledge and Its Applications (Extended Abstract), pp. 103–112. MIT (1988)

    Google Scholar 

  4. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  5. Bellare, M., Impagliazzo, R., Naor, M.: Does parallel repetition lower the error in computationally sound protocols? In: Proceedings of 38th Annual Symposium on Foundations of Computer Science, pp. 374–383. IEEE (1997)

    Google Scholar 

  6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, 1–21 November 1993

    Google Scholar 

  7. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  8. Bellare, M., Yung, M.: Certifying permutations: noninteractive zero-knowledge based on any trapdoor permutation. J. Cryptol. 9(3), 149–166 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  9. Cramer, R., Damgård, I.B.: Zero-knowledge proofs for finite field arithmetic or: can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 424–441. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  10. Cramer, R., Damgård, I.B., Schoenmakers, B.: Proof of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  11. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology. Revisited, p. 31 (2000)

    Google Scholar 

  12. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untraceability. J. Cryptol. 1(1), 65–75 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature cards. In: ICS, vol. 10, pp. 310–331 (2010)

    Google Scholar 

  14. Damgård, I.B.: On the existence of bit commitment schemes and zero-knowledge proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 17–27. Springer, Heidelberg (1990)

    Google Scholar 

  15. Damgård, I.B.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  16. Damgård, I.B., Goldreich, O., Okamoto, T., Wigderson, A.: Honest verifier vs dishonest verifier in public coin zero-knowledge proofs. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 325–338. Springer, Heidelberg (1995)

    Google Scholar 

  17. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)

    CrossRef  Google Scholar 

  18. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.: Using fully homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs. J. Cryptol. 28(4), 1–22 (2015)

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  21. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  22. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM J. Comput. 25(1), 169–192 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  23. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: Proceedings of 44th Annual IEEE Symposium on Foundations of Computer Science, 2003 (2003)

    Google Scholar 

  24. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pp. 291–304. ACM (1985)

    Google Scholar 

  25. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM (JACM) 38(3), 690–728 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  26. Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge protocols using signatures. J. Cryptol. 19(2), 169–209 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  27. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. J. Cryptol. 27(3), 506–543 (2014)

    CrossRef  MATH  MathSciNet  Google Scholar 

  28. Goldreich, O.: The Foundations of Cryptography. Basic Techniques, vol. 1. Cambridge University Press, Cambridge (2001)

    CrossRef  MATH  Google Scholar 

  29. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-knowledge. J. ACM (JACM) 59, 11 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  30. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  31. Groth, J.: Short non-interactive zero-knowledge proofs. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 341–358. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  32. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  33. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing (2011)

    Google Scholar 

  34. Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof system for NP with general assumptions. J. Cryptol. 11, 1–27 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  35. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  36. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  37. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)

    Google Scholar 

  38. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252, May 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Groth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bootle, J., Cerulli, A., Chaidos, P., Groth, J. (2016). Efficient Zero-Knowledge Proof Systems. In: Aldini, A., Lopez, J., Martinelli, F. (eds) Foundations of Security Analysis and Design VIII. FOSAD FOSAD 2016 2015. Lecture Notes in Computer Science(), vol 9808. Springer, Cham. https://doi.org/10.1007/978-3-319-43005-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43005-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43004-1

  • Online ISBN: 978-3-319-43005-8

  • eBook Packages: Computer ScienceComputer Science (R0)