Skip to main content

Fully Convolutional Networks in Medical Imaging: Applications to Image Enhancement and Recognition

  • Chapter
  • First Online:
Deep Learning and Convolutional Neural Networks for Medical Image Computing

Abstract

Convolutional neural networks (CNNs) are hierarchical models that have immense representational capacity and have been successfully applied to computer vision problems including object localisation, classification and super-resolution. A particular example of CNN models, known as fully convolutional network (FCN) , has been shown to offer improved computational efficiency and representation learning capabilities due to simpler model parametrisation and spatial consistency of extracted features. In this chapter, we demonstrate the power and applicability of this particular model on two medical imaging tasks, image enhancement via super-resolution and image recognition . In both examples, experimental results show that FCN models can significantly outperform traditional learning-based approaches while achieving real-time performance. Additionally, we demonstrate that the proposed image classification FCN model can be used in organ localisation task as well without requiring additional training data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems 25 (NIPS 2012). pp 1097–1105

    Google Scholar 

  2. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  3. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385

  4. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 234–241

    Google Scholar 

  5. Tran PV (2016) A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv preprint arXiv:1604.00494

  6. Ghesu FC, Georgescu B, Mansi T, Neumann D, Hornegger J, Comaniciu D (2016) An artificial agent for anatomical landmark detection in medical images. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 229–237

    Google Scholar 

  7. Payer C, Štern D, Bischof H, Urschler M (2016) Regressing heatmaps for multiple landmark localization using CNNs. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 230–238

    Google Scholar 

  8. Miao S, Wang ZJ, Liao R (2016) A CNN regression approach for real-time 2D/3D registration. IEEE Trans Med Imaging 35(5):1352–1363

    Article  Google Scholar 

  9. Jamaludin A, Kadir T, Zisserman A (2016) SpineNet: automatically pinpointing classification evidence in spinal MRIs. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 166–175

    Google Scholar 

  10. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 3431–3440

    Google Scholar 

  11. Dong C, Deng Y, Change Loy C, Tang X (2015) Compression artifacts reduction by a deep convolutional network. In: IEEE CVPR. pp 576–584

    Google Scholar 

  12. Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional networks. IEEE PAMI 38(2):295–307

    Article  Google Scholar 

  13. Redmon J, Divvala S, Girshick R, Farhadi A (2015) You only look once: unified, real-time object detection. arXiv preprint arXiv:1506.02640

  14. Shi W, Caballero J, Ledig C, Zhuang X, Bai W, Bhatia K, de Marvao A, Dawes T, ORegan D, Rueckert D (2013) Cardiac image super-resolution with global correspondence using multi-atlas patchmatch. In: MICCAI. pp 9–16

    Google Scholar 

  15. Manjón JV, Coupé P, Buades A, Fonov V, Collins DL, Robles M (2010) Non-local MRI upsampling. MedIA 14(6):784–792

    Google Scholar 

  16. Rueda A, Malpica N, Romero E (2013) Single-image super-resolution of brain MR images using overcomplete dictionaries. MedIA 17(1):113–132

    Google Scholar 

  17. Bhatia KK, Price AN, Shi W, Rueckert D (2014) Super-resolution reconstruction of cardiac MRI using coupled dictionary learning. In: IEEE ISBI. pp 947–950

    Google Scholar 

  18. Alexander DC, Zikic D, Zhang J, Zhang H, Criminisi A (2014) Image quality transfer via random forest regression: applications in diffusion MRI. In: MICCAI. Springer, Berlin, pp 225–232

    Google Scholar 

  19. Odille F, Bustin A, Chen B, Vuissoz PA, Felblinger J (2015) Motion-corrected, super-resolution reconstruction for high-resolution 3D cardiac cine MRI. In: MICCAI. Springer, Berlin, pp 435–442

    Google Scholar 

  20. Plenge E, Poot D, Niessen W, Meijering E (2013) Super-resolution reconstruction using cross-scale self-similarity in multi-slice MRI. In: MICCAI. pp 123–130

    Google Scholar 

  21. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4):600–612

    Google Scholar 

  22. Greenspan H (2009) Super-resolution in medical imaging. Comput J 52(1):43–63

    Article  Google Scholar 

  23. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  24. Zhao H, Gallo O, Frosio I, Kautz J (2015) Is L2 a good loss function for neural networks for image processing? arXiv preprint arXiv:1511.08861

  25. Bromley J, Guyon I, Lecun Y, Sckinger E, Shah R (1994) Signature verification using a Siamese time delay neural network. In: NIPS. pp 737–744

    Google Scholar 

  26. Su H, Maji S, Kalogerakis E, Learned-Miller E (2015) Multi-view convolutional neural networks for 3D shape recognition. In: IEEE CVPR. pp 945–953

    Google Scholar 

  27. Lötjönen J, Pollari M, Lauerma K (2004) Correction of movement artifacts from 4-D cardiac short-and long-axis MR data. In: MICCAI. Springer, Berlin, pp 405–412

    Google Scholar 

  28. Bai W, Shi W, O’Regan DP, Tong T, Wang H, Jamil-Copley S, Peters NS, Rueckert D (2013) A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE TMI 32(7):1302–1315

    Google Scholar 

  29. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE TMI 18(8):712–721

    Google Scholar 

  30. Salomon L, Alfirevic Z, Berghella V, Bilardo C, Leung KY, Malinger G, Munoz H et al (2011) Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obst Gyn 37(1):116–126

    Article  Google Scholar 

  31. Kurinczuk J, Hollowell J, Boyd P, Oakley L, Brocklehurst P, Gray R (2010) The contribution of congenital anomalies to infant mortality. National Perinatal Epidemiology Unit, University of Oxford

    Google Scholar 

  32. Bull C et al (1999) Current and potential impact of fetal diagnosis on prevalence and spectrum of serious congenital heart disease at term in the UK. The Lancet 354(9186):1242–1247

    Article  Google Scholar 

  33. NHS screening programmes (2015) Fetal anomalie screen programme handbook. pp 28–35

    Google Scholar 

  34. Chan L, Fung T, Leung T, Sahota D, Lau T (2009) Volumetric (3D) imaging reduces inter-and intraobserver variation of fetal biometry measurements. Ultrasound Obst Gyn 33(4):447–452

    Article  Google Scholar 

  35. Yaqub M, Kelly B, Papageorghiou A, Noble J (2015) Guided random forests for identification of key fetal anatomy and image categorization in ultrasound scans. In: Proceedings of the MICCAI. Springer, Berlin, pp 687–694

    Google Scholar 

  36. Maraci M, Napolitano R, Papageorghiou A, Noble J (2014) Searching for structures of interest in an ultrasound video sequence. In: Proceedings of the MLMI. pp 133–140

    Google Scholar 

  37. Chen H, Dou Q, Ni D, Cheng JZ, Qin J, Li S, Heng PA (2015) Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. In: Proceedings of the MICCAI. Springer, Berlin, pp 507–514

    Google Scholar 

  38. Chen H, Ni D, Qin J, Li S, Yang X, Wang T, Heng P (2015) Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J Biomed Health Inform 19(5):1627–1636

    Article  Google Scholar 

  39. Ni D, Yang X, Chen X, Chin CT, Chen S, Heng PA, Li S, Qin J, Wang T (2014) Standard plane localization in ultrasound by radial component model and selective search. Ultrasound Med Biol 40(11):2728–2742

    Article  Google Scholar 

  40. Lin M, Chen Q, Yan S (2013) Network in network. arXiv:1312.4400

  41. Oquab M, Bottou L, Laptev I, Sivic J (2015) Is object localization for free?-weakly-supervised learning with convolutional neural networks. In: IEEE proceedings of the CVPR. pp 685–694

    Google Scholar 

  42. Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980

  43. Springenberg J, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving for simplicity: the all convolutional net. arXiv:1412.6806

  44. Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285–296):23–27

    Google Scholar 

  45. Kamnitsas K, Ledig C, Newcombe V, Simpson J, Kane A, Menon D, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian F. Baumgartner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baumgartner, C.F., Oktay, O., Rueckert, D. (2017). Fully Convolutional Networks in Medical Imaging: Applications to Image Enhancement and Recognition. In: Lu, L., Zheng, Y., Carneiro, G., Yang, L. (eds) Deep Learning and Convolutional Neural Networks for Medical Image Computing. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-42999-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42999-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42998-4

  • Online ISBN: 978-3-319-42999-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics