Skip to main content

Comparative Evaluation of Action Recognition Methods via Riemannian Manifolds, Fisher Vectors and GMMs: Ideal and Challenging Conditions

  • Conference paper
  • First Online:
Trends and Applications in Knowledge Discovery and Data Mining (PAKDD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9794))

Included in the following conference series:

Abstract

We present a comparative evaluation of various techniques for action recognition while keeping as many variables as possible controlled. We employ two categories of Riemannian manifolds: symmetric positive definite matrices and linear subspaces. For both categories we use their corresponding nearest neighbour classifiers, kernels, and recent kernelised sparse representations. We compare against traditional action recognition techniques based on Gaussian mixture models and Fisher vectors (FVs). We evaluate these action recognition techniques under ideal conditions, as well as their sensitivity in more challenging conditions (variations in scale and translation). Despite recent advancements for handling manifolds, manifold based techniques obtain the lowest performance and their kernel representations are more unstable in the presence of challenging conditions. The FV approach obtains the highest accuracy under ideal conditions. Moreover, FV best deals with moderate scale and translation changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turaga, P., Veeraraghavan, A., Srivastava, A., Chellappa, R.: Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2273–2286 (2011)

    Article  Google Scholar 

  2. Carvajal, J., Sanderson, C., McCool, C., Lovell, B.C.: Multi-action recognition via stochastic modelling of optical flow and gradients. In: Workshop on Machine Learning for Sensory Data Analysis (MLSDA), pp. 19–24 (2014)

    Google Scholar 

  3. Lin, W., Sun, M.T., Poovandran, R., Zhang, Z.: Human activity recognition for video surveillance. In: International Symposium on Circuits and Systems (ISCAS), pp. 2737–2740 (2008)

    Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  5. Csurka, G., Perronnin, F.: Fisher vectors: beyond bag-of-visual-words image representations. In: Richard, P., Braz, J. (eds.) VISIGRAPP 2010. CCIS, vol. 229, pp. 28–42. Springer, Heidelberg (2011)

    Google Scholar 

  6. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  7. Aggarwal, J., Ryoo, M.: Human activity analysis: a review. ACM Comput. Surv. 43, 16:1–16: 43 (2011)

    Article  Google Scholar 

  8. Ke, S.R., Thuc, H.L.U., Lee, Y.J., Hwang, J.N., Yoo, J.H., Choi, K.H.: A review on video-based human activity recognition. Computers 2, 88 (2013)

    Article  Google Scholar 

  9. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. 28, 976–990 (2010)

    Article  Google Scholar 

  10. Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based methods for action representation, segmentation and recognition. Comput. Vis. Image Underst. 115, 224–241 (2011)

    Article  Google Scholar 

  11. Hassner, T.: A critical review of action recognition benchmarks. In: Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 245–250 (2013)

    Google Scholar 

  12. Pérez, Ó., Piccardi, M., García, J., Molina, J.M.: Comparison of classifiers for human activity recognition. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 192–201. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: International Conference on Pattern Recognition (ICPR), vol. 3, pp. 32–36 (2004)

    Google Scholar 

  14. Rodriguez, M., Ahmed, J., Shah, M.: Action MACH a spatio-temporal maximum average correlation height filter for action recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  15. Chen, C.C., Ryoo, M.S., Aggarwal, J.K.: UT-Tower Dataset: Aerial View Activity Classification Challenge (2010)

    Google Scholar 

  16. Ali, S., Shah, M.: Human action recognition in videos using kinematic features and multiple instance learning. Pattern Anal. Mach. Intell. 32, 288–303 (2010)

    Article  Google Scholar 

  17. Guo, K., Ishwar, P., Konrad, J.: Action recognition from video using feature covariance matrices. IEEE Trans. Image Process. 22, 2479–2494 (2013)

    Article  MathSciNet  Google Scholar 

  18. Sanin, A., Sanderson, C., Harandi, M., Lovell, B.: Spatio-temporal covariance descriptors for action and gesture recognition. In: Workshop on Applications of Computer Vision (WACV), pp. 103–110 (2013)

    Google Scholar 

  19. Harandi, M.T., Sanderson, C., Shirazi, S., Lovell, B.C.: Kernel analysis on Grassmann manifolds for action recognition. Pattern Recogn. Lett. 34, 1906–1915 (2013)

    Article  Google Scholar 

  20. Narasimha Murty, M., Susheela Devi, V.: Nearest neighbour based classifiers. In: Pattern Recognition: An Algorithmic Approach. Undergraduate Topics in Computer Science, pp. 48–85. Springer, London (2011). doi:10.1007/978-0-85729-495-1_3

    Google Scholar 

  21. Hamm, J., Lee, D.D.: Grassmann discriminant analysis: a unifying view on subspace-based learning. In: International Conference on Machine Learning (ICML), pp. 376–383 (2008)

    Google Scholar 

  22. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56, 411–421 (2006)

    Article  Google Scholar 

  23. Vemulapalli, R., Pillai, J., Chellappa, R.: Kernel learning for extrinsic classification of manifold features. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1782–1789 (2013)

    Google Scholar 

  24. Harandi, M.T., Sanderson, C., Hartley, R., Lovell, B.C.: Sparse coding and dictionary learning for symmetric positive definite matrices: a kernel approach. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 216–229. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Kernel methods on the Riemannian manifold of symmetric positive definite matrices. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 73–80 (2013)

    Google Scholar 

  26. Zhang, J., Wang, L., Zhou, L., Li, W.: Learning discriminative Stein kernel for SPD matrices and its applications. IEEE Trans. Neural Netw. Learn. Syst. (in press)

    Google Scholar 

  27. Wang, R., Guo, H., Davis, L., Dai, Q.: Covariance discriminative learning: a natural and efficient approach to image set classification. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2496–2503 (2012)

    Google Scholar 

  28. Shirazi, S., Harandi, M., Sanderson, C., Alavi, A., Lovell, B.: Clustering on Grassmann manifolds via kernel embedding with application to action analysis. In: International Conference on Image Processing (ICIP), pp. 781–784 (2012)

    Google Scholar 

  29. Wu, Y., Jia, Y., Li, P., Zhang, J., Yuan, J.: Manifold kernel sparse representation of symmetric positive-definite matrices and its applications. IEEE Trans. Image Process. 24, 3729–3741 (2015)

    Article  MathSciNet  Google Scholar 

  30. Harandi, M., Sanderson, C., Shen, C., Lovell, B.: Dictionary learning and sparse coding on Grassmann manifolds: an extrinsic solution. In: International Conference on Computer Vision (ICCV), pp. 3120–3127 (2013)

    Google Scholar 

  31. Bini, D.A., Iannazzo, B.: Computing the Karcher mean of symmetric positive definite matrices. Linear Algebra Appl. 438, 1700–1710 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the Fisher vector: theory and practice. Int. J. Comput. Vision 105, 222–245 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  34. Shirazi, S., Sanderson, C., McCool, C., Harandi, M.T.: Bags of affine subspaces for robust object tracking. In: IEEE International Conference on Digital Image Computing: Techniques and Applications (2015). http://dx.org/10.1109/DICTA.2015.7371239

  35. Traore, I., Ahmed, A.A.E.: Continuous Authentication Using Biometrics: Data, Models, and Metrics, 1st edn. IGI Global, Hershey (2011)

    Google Scholar 

  36. Hirose, S., Nambu, I., Naito, E.: An empirical solution for over-pruning with a novel ensemble-learning method for fMRI decoding. J. Neurosci. Methods 239, 238–245 (2015)

    Article  Google Scholar 

  37. Aggarwal, N., Agrawal, R.: First and second order statistics features for classification of magnetic resonance brain images. J. Signal Inf. Process. 3, 146–153 (2012)

    Google Scholar 

Download references

Acknowledgements

NICTA is funded by the Australian Government via the Department of Communications, and the Australian Research Council via the ICT Centre of Excellence program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad Sanderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Carvajal, J., Wiliem, A., McCool, C., Lovell, B., Sanderson, C. (2016). Comparative Evaluation of Action Recognition Methods via Riemannian Manifolds, Fisher Vectors and GMMs: Ideal and Challenging Conditions. In: Cao, H., Li, J., Wang, R. (eds) Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9794. Springer, Cham. https://doi.org/10.1007/978-3-319-42996-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42996-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42995-3

  • Online ISBN: 978-3-319-42996-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics