Skip to main content

Neural Choice by Elimination via Highway Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9794))

Abstract

We introduce Neural Choice by Elimination, a new framework that integrates deep neural networks into probabilistic sequential choice models for learning to rank. Given a set of items to chose from, the elimination strategy starts with the whole item set and iteratively eliminates the least worthy item in the remaining subset. We prove that the choice by elimination is equivalent to marginalizing out the random Gompertz latent utilities. Coupled with the choice model is the recently introduced Neural Highway Networks for approximating arbitrarily complex rank functions. We evaluate the proposed framework on a large-scale public dataset with over 425K items, drawn from the Yahoo! learning to rank challenge. It is demonstrated that the proposed method is competitive against state-of-the-art learning to rank methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agarwal, A., Raghavan, H., Subbian, K., Melville, P., Lawrence, R.D., Gondek, D.C., Fan, J.: Learning to rank for robust question answering. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 833–842. ACM (2012)

    Google Scholar 

  2. Azari, H., Parks, D., Xia, L.: Random utility theory for social choice. In: Advances in Neural Information Processing Systems, pp. 126–134 (2012)

    Google Scholar 

  3. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MATH  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  6. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning, p. 96. ACM (2005)

    Google Scholar 

  7. Burges, C.J., Svore, K.M., Bennett, P.N., Pastusiak, A., Qiang, W.: Learning to rank using an ensemble of lambda-gradient models. In: Yahoo! Learning to Rank Challenge, pp. 25–35 (2011)

    Google Scholar 

  8. Chapelle, O., Chang, Y.: Yahoo! learning to rank challenge overview. In: JMLR Workshop and Conference Proceedings, vol. 14, pp. 1–24 (2011)

    Google Scholar 

  9. Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.: Expected reciprocal rank for graded relevance. In: CIKM, pp. 621–630. ACM (2009)

    Google Scholar 

  10. Deng, L., He, X., Gao, J.: Deep stacking networks for information retrieval. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3153–3157. IEEE (2013)

    Google Scholar 

  11. Dong, Y., Huang, C., Liu, W.: RankCNN: when learning to rank encounters the pseudo preference feedback. Comput. Stan. Interfaces 36(3), 554–562 (2014)

    Article  Google Scholar 

  12. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fu, Q., Lu, J., Wang, Z.: ‘Reverse’ nested lottery contests. J. Math. Econ. 50, 128–140 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006)

    Article  MATH  Google Scholar 

  16. Gormley, I.C., Murphy, T.B.: A mixture of experts model for rank data with applications in election studies. Ann. Appl. Stat. 2(4), 1452–1477 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Henery, R.J.: Permutation probabilities as models for horse races. J. R. Stat. Soc. Ser. B 43(1), 86–91 (1981)

    MathSciNet  MATH  Google Scholar 

  18. Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep structured semantic models for web search using clickthrough data. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 2333–2338. ACM (2013)

    Google Scholar 

  19. Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 446 (2002)

    Article  Google Scholar 

  20. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 133–142. ACM, New York (2002)

    Google Scholar 

  21. Li, P., Burges, C., Wu, Q., Platt, J.C., Koller, D., Singer, Y., Roweis, S.: McRank: learning to rank using multiple classification and gradient boosting. In: Advances in Neural Information Processing Systems (2007)

    Google Scholar 

  22. Liu, T.-Y.: Learning to Rank for Information Retrieval. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  23. McFadden, D.: Conditional logit analysis of qualitative choice behavior. In: Frontiers in Econometrics, pp. 105–142 (1973)

    Google Scholar 

  24. Plackett, R.L.: The analysis of permutations. Appl. Stat. 24, 193–202 (1975)

    Article  MathSciNet  Google Scholar 

  25. Severyn, A., Moschitti, A.: Learning to rank short text pairs with convolutional deep neural networks. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 373–382. ACM (2015)

    Google Scholar 

  26. Song, Y., Wang, H., He, X.: Adapting deep ranknet for personalized search. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, pp. 83–92. ACM (2014)

    Google Scholar 

  27. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks (2015). arXiv preprint: arXiv:1507.06228

  29. Thurstone, L.L.: A law of comparative judgment. Psychol. Rev. 34(4), 273 (1927)

    Article  Google Scholar 

  30. Tran, T., Phung, D., Venkatesh, S.: Thurstonian Boltzmann machines: learning from multiple inequalities. In: International Conference on Machine Learning (ICML), Atlanta, USA, 16–21 June 2013

    Google Scholar 

  31. Tran, T., Phung, D.Q., Venkatesh, S.: Sequential decision approach to ordinal preferences in recommender systems. In: Proceedings of the 26th AAAI Conference, Toronto, Ontario, Canada (2012)

    Google Scholar 

  32. Truyen, T., Phung, D.Q., Venkatesh, S.: Probabilistic models over ordered partitions with applications in document ranking and collaborative filtering. In: Proceedings of SIAM Conference on Data Mining (SDM), Mesa, Arizona, USA. SIAM (2011)

    Google Scholar 

  33. Tversky, A.: Elimination by aspects: a theory of choice. Psychol. Rev. 79(4), 281 (1972)

    Article  Google Scholar 

  34. Xia, F., Liu, T.Y., Wang, J., Zhang, W., Li, H.: Listwise approach to learning to rank: theory and algorithm. In Proceedings of the 25th International Conference on Machine Learning, pp. 1192–1199. ACM (2008)

    Google Scholar 

  35. Yellott, J.I.: The relationship between Luce’s choice axiom, Thurstone’s theory of comparative judgment, and the double exponential distribution. J. Math. Psychol. 15(2), 109–144 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truyen Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Tran, T., Phung, D., Venkatesh, S. (2016). Neural Choice by Elimination via Highway Networks. In: Cao, H., Li, J., Wang, R. (eds) Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9794. Springer, Cham. https://doi.org/10.1007/978-3-319-42996-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42996-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42995-3

  • Online ISBN: 978-3-319-42996-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics