Understanding Mechanism of Fungus Mediated Nanosynthesis: A Molecular Approach

  • Anal K. Jha
  • Kamal PrasadEmail author
Part of the Fungal Biology book series (FUNGBIO)


The chapter details different processes of biosynthesis of inorganic (metallic and oxide) nanoparticles mediated by the different members of fungi. The biosynthetic mechanism (at molecular level) has been discussed in detail. The nanosynthesis is broadly dependent upon the modulation of key parameters like temperature, pH and other medium conditions. It is conclusively found that although, the cellular level organization matters along with their metabolic fluxes/signal transduction pathways, it is the different stress shearing cues at different levels (ranging from cell wall to nucleus) that bestows a unique echelon to an individual genera in the phylogeny.


Reactive Oxygen Species Shikimic Acid Candida Glabrata Agaricus Bisporus Methionine Sulfoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adamis PD, Mannarino SC, Riger CJ, Duarte G, Cruz A, Pereira MD, Eleutherio EC (2009) Lap4, a vacuolar aminopeptidase I, is involved in cadmium-glutathione metabolism. Biometals 22:243–249PubMedCrossRefGoogle Scholar
  2. Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234CrossRefGoogle Scholar
  3. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109PubMedCrossRefGoogle Scholar
  4. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Col Surf B Biointerfaces 28:313–318CrossRefGoogle Scholar
  5. Avery SV (2001) Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol 49:111–142PubMedCrossRefGoogle Scholar
  6. Avery AM, Avery SV (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276:33730–33735PubMedCrossRefGoogle Scholar
  7. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612PubMedCrossRefGoogle Scholar
  8. Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Col Surf B Biointerfaces 68:88–92CrossRefGoogle Scholar
  9. Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589CrossRefGoogle Scholar
  10. Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170CrossRefGoogle Scholar
  11. Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887PubMedPubMedCentralGoogle Scholar
  12. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Col Surf B Biointerfaces 47:160–164CrossRefGoogle Scholar
  13. Bhambure R, Bule M, Shaligram NS, Kamat M, Singhal R (2009) Extracellular biosynthesis of gold nanoparticles using Aspergillus niger–its characterization and stability. Chem Eng Technol 32:1036–1041CrossRefGoogle Scholar
  14. Breierová E, Vajczikova I, Sasinkova V, Stratilova E, Fisera M, Gregor T, Sajbidor J (2002) Biosorption of cadmium ions by different yeast species. Z Naturforsch C 57:634–639PubMedCrossRefGoogle Scholar
  15. Breierová E, Gregor T, Juršíková P, Stratilová E, Fišera M (2004) The role of pullulan and pectin in the uptake of Cd2+ and Ni2+ ions by Aureobasidium pullulans. Ann Microbiol 54:247–255Google Scholar
  16. Bun-ya M, Harashima S, Oshima Y (1992) Putative GTP-binding protein, Gtr1, associated with the function of the Pho84 inorganic phosphate transporter in Saccharomyces cerevisiae. Mol Cell Biol 12:2958–2966PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bun-ya M, Shikata K, Nakade S, Yompakdee C, Harashima S, Oshima Y (1996) Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr Genet 29:344–351PubMedGoogle Scholar
  18. Butt TR, Ecker DJ (1987) Yeast metallothionein and applications in biotechnology. Microbiol Rev 51:351–364PubMedPubMedCentralGoogle Scholar
  19. Čertik M, Breierová E, Juršíková P (2005) Effect of cadmium on lipid composition of Aureobasidium pullulans grown with added extracellular polysaccharides. Int Biodeter Biodegr 55:195–202CrossRefGoogle Scholar
  20. Chae HZ, Chung SJ, Rhee SG (1994) Thioredoxin dependent peroxide reductase from yeast. J Biol Chem 269:27670–27678PubMedGoogle Scholar
  21. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583PubMedCrossRefGoogle Scholar
  22. Cherian G, Chan H (1993) Biological roles and medical implications. In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III. Birkhäuser, BaselGoogle Scholar
  23. Choi JH, Lou W, Vancura A (1998) A novel membranebound glutathione S-transferase functions in the stationary phase of the yeast Saccharomyces cerevisiae. J Biol Chem 273:29915–29922PubMedCrossRefGoogle Scholar
  24. Clausen CA, Green F (2003) Oxalic acid overproduction by copper-tolerant brown rot basidiomycetes on southern yellow pine treated with copper-based preservatives. Int Biodeter Biodegr 51:139–144CrossRefGoogle Scholar
  25. Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolrance to toxic metals by a gene family of phytochelatin synthase from plants and yeast. EMBO J 18:3325–3333PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160PubMedCrossRefGoogle Scholar
  28. Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763:747–758PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cunningham DP, Lundie LL (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14PubMedPubMedCentralGoogle Scholar
  30. Dameron CT, Winge DR (1990) Peptide mediated formation of quantum semiconductors. Trends Biotechnol 8:3–6PubMedCrossRefGoogle Scholar
  31. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597CrossRefGoogle Scholar
  32. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346PubMedCrossRefGoogle Scholar
  33. Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324:1–18PubMedPubMedCentralCrossRefGoogle Scholar
  34. Deplanche K, Macaskie LE (2008) Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng 99:1055–1064PubMedCrossRefGoogle Scholar
  35. Deplanche K, Woods RD, Mikheenko IP, Sockett RE, Macaskie LE (2008) Manufacture of stable palladium and gold nanoparticles on native and genetically engineered flagella scaffolds. Biotechnol Bioeng 101:873–880PubMedCrossRefGoogle Scholar
  36. Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9:1165–1170CrossRefGoogle Scholar
  37. Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8. doi: 10.1186/1477-3155-3-8 CrossRefGoogle Scholar
  38. Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57:6246–6252CrossRefGoogle Scholar
  39. Flores CY, Miñán AG, Grillo CA, Salvarezza RC, Vericat C, Schilardi PL (2013) Citrate-capped silver nanoparticles showing good bactericidal effect against both planktonic and sessile bacteria and a low cytotoxicity to osteoblastic cells. ACS Appl Mater Interfaces 5:3149–3159PubMedCrossRefGoogle Scholar
  40. Fortin D, Beveridge TJ (2000) From biology to biotechnology and medical applications. In: Aeuerien E (ed). Biomineralization. Wiley-VCH, WeinheimGoogle Scholar
  41. Gadda G, Fitzpatrick PF (1998) Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum. Biochem 37:6154–6164CrossRefGoogle Scholar
  42. Gan Z (1991) Yeast thioredoxin genes. J Biol Chem 266:1692–1696PubMedGoogle Scholar
  43. Garrido EO, Grant CM (2002) Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Mol Microbiol 43:993–1003PubMedCrossRefGoogle Scholar
  44. Gharieb MM, Kierans M, Gadd GM (1999) Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction, and volatilization. Mycolog Res 103:299–305CrossRefGoogle Scholar
  45. Ghodake G, Lim SR, Lee DS (2013) Casein hydrolytic peptides mediated green synthesis of antibacterial silver nanoparticles. Col Surf B Biointerfaces 108:147–151CrossRefGoogle Scholar
  46. González-Chávez M, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323PubMedCrossRefGoogle Scholar
  47. González-Guerrero,M., AzcónAguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140Google Scholar
  48. González-Guerrero M, Benabdellah K, Ferrol N, Azcón-Aguilar C (2009) Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas-functional processes and ecological impacts. Springer, BerlinGoogle Scholar
  49. González-Guerrero M, Benabdellah K, Valderas A, Azcón-Aguilar C, Ferrol N (2010) GintABC1encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd, and oxidative stress in Glomus intraradices. Mycorrhiza 20:137–146PubMedCrossRefGoogle Scholar
  50. Grant CM, Collinson LP, Roe J-H, Dawes IW (1996a) Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol 21:171–179PubMedCrossRefGoogle Scholar
  51. Grant CM, MacIver FH, Dawes IW (1996b) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29:511–515PubMedCrossRefGoogle Scholar
  52. Grant CM, MacIver FH, Dawes IW (1996c) Stationary phase induction of GLR1 expression is mediated by the yAP-1 transcriptional protein in Saccharomyces cerevisiae. Mol Microbiol 22:739–774PubMedCrossRefGoogle Scholar
  53. Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy metal complexing pepetides of higher plants. Science 230:674–676PubMedCrossRefGoogle Scholar
  54. Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy- metal-binding peptides of plants, are synthesised from glutathione by a specific gamma-glutamylcystein dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842PubMedPubMedCentralCrossRefGoogle Scholar
  55. Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026PubMedCrossRefGoogle Scholar
  56. Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1164PubMedPubMedCentralCrossRefGoogle Scholar
  57. Halliwell B (2006) Reactive species and antioxidants – redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hegedűs N, Emri T, Szilágyi J, Zs K, Nagy I, Penninckx MJ, Pócsi I (2007) Effect of heavy metals on the GSH status in different ectomycorrhizal Paxillus involutus strains. World J Microbiol Biotechnol 23:1339–1343CrossRefGoogle Scholar
  59. Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ (2003) The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27:35–64PubMedCrossRefGoogle Scholar
  60. Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264:13963–13966PubMedGoogle Scholar
  61. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnol 18:105104–105115CrossRefGoogle Scholar
  62. Inoue Y, Matsuda T, Sugiyama K-I, Izawa S, Kimura A (1999) Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 274:27002–27009PubMedCrossRefGoogle Scholar
  63. Izawa S, Maeda K, Sugiyama K-I, Mano J, Inoue Y (1999) Thioredoxin derficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J Biol Chem 274:28459–28465PubMedCrossRefGoogle Scholar
  64. Jang HH, Lee KO, Chi YH, Jung BG, Park SK (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117:625–635PubMedCrossRefGoogle Scholar
  65. Jarosz-Wilkołazka A, Gadd GM (2003) Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere 52:541–547PubMedCrossRefGoogle Scholar
  66. Jarosz-Wilkołazka A, Graz M, Braha B, Menge S, Schlosser D, Krauss GJ (2006) Species-specific Cd-stress response in the white rot basidiomycetes Abortiporus biennis and Cerrena unicolor. Biometals 19:39–49PubMedCrossRefGoogle Scholar
  67. Jha AK, Prasad K (2010a) Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets. Biotechnol J 5:285–291PubMedCrossRefGoogle Scholar
  68. Jha AK, Prasad K (2010b) Synthesis of BaTiO3 nanoparticles: A new sustainable green approach. Integrated Ferroelectr 117:49–54CrossRefGoogle Scholar
  69. Jha AK, Prasad K (2010c) Understanding biosynthesis of metallic/oxide nanoparticles: a biochemical perspective. In: Kumar SA, Thiagarajan S, Wang S-F (eds) Biocompatible nanomaterials synthesis, characterization and applications. NOVA Sci. Publication, USAGoogle Scholar
  70. Jha AK, Prasad K, Kulkarni AR (2008a) Synthesis of nickel nanoparticles: bioreduction method. Nanosci Nanotechnol Ind J 2:26–29Google Scholar
  71. Jha AK, Prasad K, Kulkarni AR (2008b) Yeast mediated synthesis of silver nanoparticles. Int J Nanosci Nanotechnol 4:17–21Google Scholar
  72. Jha AK, Prasad K, Kumar V, Prasad K (2009a) Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol Prog 25:1476–1479PubMedCrossRefGoogle Scholar
  73. Jha AK, Prasad K, Prasad K (2009b) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43:303–306CrossRefGoogle Scholar
  74. Jha AK, Prasad K, Prasad K (2009c) Biosynthesis of Sb2O3 nanoparticles: a low cost green approach. Biotechnol J 4:1582–1585PubMedCrossRefGoogle Scholar
  75. Jha AK, Prasad K, Kulkarni AR (2010) Synthesis of Gd2O3 nanoparticles using Lactobacillus sp.: a novel green approach. Int J Green Nanotechnol: Phys Chem 2:P31–P38CrossRefGoogle Scholar
  76. Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts forp-nitrotoluene hydrogenation. Nanotechnol 20:385601CrossRefGoogle Scholar
  77. Kagi JHR (1993) Biological roles and medical implications. In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III. Birkhäuser, BaselGoogle Scholar
  78. Kagi JHR, Schaffer A (1988) Biochemistry of metallothionein. Biochem 27:8509–8515CrossRefGoogle Scholar
  79. Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62:4411–4413CrossRefGoogle Scholar
  80. Karbasian M, Atyabi SM, Siadat SD, Momen SB, Norouzian D (2008) Optimizing nano-silver formation by Fusarium oxysporum PTCC 5115 employing response surface methodology. Am J Agric Biol Sci 3:433–437CrossRefGoogle Scholar
  81. Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Col Surf B Biointerfaces 71:133–137CrossRefGoogle Scholar
  82. Kondo N, Isobe M, Imai K, Goto T, Murasugi A, Hayashi Y (1983) Structure of cadystin, the unit-peptide of cadmium-binding peptides induced in a fission yeast, schizosaccharomyces pombe. Tetrahedron Lett 24:925–928CrossRefGoogle Scholar
  83. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588PubMedCrossRefGoogle Scholar
  84. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnol 14:95CrossRefGoogle Scholar
  85. Krolikowska A, Kudelski A, Michota A, Bukowska J (2003) SERS studies on the structure of thioglycolic acid monolayers on silver and gold. Surf Sci 532:227–232CrossRefGoogle Scholar
  86. Kuge S, Jones N (1994) YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13:655–664PubMedPubMedCentralGoogle Scholar
  87. Kumar SA, Peter Y-A, Nadeau JL (2008) Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnol 19:495101CrossRefGoogle Scholar
  88. Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747PubMedCrossRefGoogle Scholar
  89. Le DT, Lee BC, Marino SM, Zhang Y, Fomenko DE (2009) Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J Biol Chem 284:4354–4364PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lewinska A, Bartosz G (2007) Protection of yeast lacking the Ure2 protein against the toxicity of heavy metals and hydroperoxides by antioxidants. Free Radic Res 41:580–590PubMedCrossRefGoogle Scholar
  91. Limon-Pacheco J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674:137–147PubMedCrossRefGoogle Scholar
  92. Liu XF, Culotta VC (1999) Post-translation control of Nramp metal transport in yeast. Role of metal ions and the BSD2 gene. J Biol Chem 274:4863–4868PubMedCrossRefGoogle Scholar
  93. Liu XF, Supek F, Nelson N, Culotta VC (1997) Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene. J Biol Chem 272:11763–11769PubMedCrossRefGoogle Scholar
  94. Liu L, Yang J, Xie J, Luo Z, Jiang J, Yang Y (2013) The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes. Nanoscale 5:3834–3840PubMedCrossRefGoogle Scholar
  95. Liu L, Liu T, Tade M, Wang S, Lib X, Liu S (2014) Less is more, greener microbial synthesis of silver nanoparticles. Enzyme Microbial Technol 67:53–58CrossRefGoogle Scholar
  96. López-Barea J, Bárcena JA, Bocanegra JA, Florindo J, García-Alfonso C (1990) Structure, mechanism, functions, and regulatory properties of glutathione reductase. In: Vina J (ed) Glutathione: metabolism and physiological functions. CRC, Boca RatonGoogle Scholar
  97. Luikenhuis S, Dawes IW, Grant CM (1997) The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell 9:1081–1091CrossRefGoogle Scholar
  98. Haq Manzoor-ul, Rathod V, Singh D, Singh AK, Ninganagouda S, Hiremath J (2015) Dried mushroom Agaricus bisporus mediated synthesis of silver nanoparticles from Bandipora District (Jammu and Kashmir) and their efficacy against methicillin resistant Staphylococcus aureus (MRSA) strains. Nanosci Nanotechnol An Int J 5:1–8Google Scholar
  99. Mehra RK, Mulchandani P (1995) Glutathione-mediated transfer of Cu(I) into phytochelatins. Biochem J 307:697–705PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40PubMedCrossRefGoogle Scholar
  101. Mehra RK, Tarbet EB, Gray WR, Winge DR (1988) Metal-specific synthesis of two metallothioneins and gamma-glutamyl peptides in Candida glabrata. Proc Natl Acad Sci USA 85:8815–8819PubMedPubMedCentralCrossRefGoogle Scholar
  102. Mehra RK, Mulchandani P, Hunter TC (1994) Role of CdS quantum crystallites in cadmium resistance in Candida glabrata. Biochem Biophys Res Commun 200:1193–1200PubMedCrossRefGoogle Scholar
  103. Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671PubMedCrossRefGoogle Scholar
  104. Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/ Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 17:235–248PubMedCrossRefGoogle Scholar
  105. Mokhtari N, Daneshpajouh S, Seyedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi HR, Shahverdi AR (2009) Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44:1415–1421CrossRefGoogle Scholar
  106. Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190:1157–1195PubMedPubMedCentralCrossRefGoogle Scholar
  107. Morgan BA, Veal EA (2007) Functions of typical 2-Cys peroxiredoxins in yeast. Subcell Biochem 44:253–265PubMedCrossRefGoogle Scholar
  108. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001a) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519CrossRefGoogle Scholar
  109. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parishcha R, Ajaykumar PV, Alam M, Sastry M, Kumar R (2001b) Bioreduction of AuCl4-ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed Engl 40:3585–3588PubMedCrossRefGoogle Scholar
  110. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3:461–463PubMedCrossRefGoogle Scholar
  111. Murasugi A, Wada C, Hayashi Y (1983) Occurrence of acid-labile sulfide in cadmium-binding peptide 1 from fission yeast. J Biochem Tokyo 93:661–664PubMedGoogle Scholar
  112. Nagy Z, Montigny C, Leverrier P, Yeh S, Goffeau A, Garrigos M, Falson P (2006) Role of the yeast ABC transporter Yor1p in cadmium detoxification. Biochimie 88:1665–1671PubMedCrossRefGoogle Scholar
  113. Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Design 2:293–298CrossRefGoogle Scholar
  114. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13PubMedCrossRefGoogle Scholar
  115. Okazaki S, Tachibana T, Naganuma A, Mano N, Kuge S (2007) Multistep disulfide bond formation in Yap1 is required for sensing and transduction of H2O2 stress signal. Mol Cell 27:675–688PubMedCrossRefGoogle Scholar
  116. Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728PubMedCrossRefGoogle Scholar
  117. Paraszkiewicz K, Długoński J (2009) Effect of nickel, copper, and zinc on emulsifier production and saturation of cellular fatty acids in the filamentous fungus Curvularia lunata. Int Biodeter Biodegr 63:100–105CrossRefGoogle Scholar
  118. Paraszkiewicz K, Frycie A, Słaba M, Długoński J (2007) Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence. Biometals 20:797–805PubMedCrossRefGoogle Scholar
  119. Paraszkiewicz K, Bernat P, Naliwajski M, Długoński J (2010) Lipid peroxidation in the fungus Curvularia lunata exposed to nickel. Arch Microbiol 192:135–141PubMedCrossRefGoogle Scholar
  120. Park SG, Cha M-K, Jeong W, Kim I-H (2000) Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J Biol Chem 275:5723–5732PubMedCrossRefGoogle Scholar
  121. Pedrajas JR, Kosmidou E, Miranda-Vizuete A, Gustafsson J-A, Wright APH (1999) Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J Biol Chem 274:6366–6373PubMedCrossRefGoogle Scholar
  122. Perego P, Howell SB (1997) Molecular mechanisms controlling toxic metal ions in yeast. Toxicol Appl Pharmacol 147:312–318PubMedCrossRefGoogle Scholar
  123. Perrone GG, Grant CM, Dawes IW (2005) Genetic and environmental factors influencing GSH homeostasis in Saccharomyces cerevisiae. Mol Biol Cell 16:218–230PubMedPubMedCentralCrossRefGoogle Scholar
  124. Philip D (2009a) Honey mediated green synthesis of gold nanoparticles. Spectrochim Acta Part A 73:650–653CrossRefGoogle Scholar
  125. Philip D (2009b) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta Part A 73:374–381CrossRefGoogle Scholar
  126. Pingali KC, Rockstraw DA, Deng S (2005) Silver nanoparticles from ultrasonic spray pyrolysis of aqueous silver nitrate. Aerosol Sci Technol 39:1010–1014CrossRefGoogle Scholar
  127. Pócsi I, Prade RA, Penninckx MJ (2004) GSH, altruistic metabolite in fungi. Adv Microb Physiol 49:1–76PubMedCrossRefGoogle Scholar
  128. Poljšak B, Gazdag Z, Jenko-Brinovec Š, Fujs Š, Pesti M, Bélagyi J, Plesničar S, Raspor P (2005) Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach. J Appl Toxicol 25:535–548PubMedCrossRefGoogle Scholar
  129. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 963961, doi: 10.1155/2014/963961
  130. Prasad K, Jha AK (2009) ZnO nanoparticles: synthesis and adsorption study. Nat Sci 1:129–135Google Scholar
  131. Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250PubMedCentralCrossRefGoogle Scholar
  132. Prasad K, Jha AK, Prasad K, Kulkarni AR (2010) Can microbes mediate nano-transformation? Ind J Phys 84:1355–1360CrossRefGoogle Scholar
  133. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713CrossRefGoogle Scholar
  134. Prasad R, Pandey R, Barman I (2015) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol. doi: 10.1002/wnan.1363 Google Scholar
  135. Prévéral S, Gayet L, Moldes C, Hoffmann J, Mounicou S, Gruet A, Reynaud F, Lobinski R, Verbavatz JM, Vavasseur A, Forestier C (2009) A common highly conserved cadmium detoxification mechanism from bacteria to humans: heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires GSH but not metal-chelating phytochelatin peptides. J Biol Chem 284:4936–4943PubMedCrossRefGoogle Scholar
  136. Rand JD, Grant CM (2006) The thioredoxin system protects ribosomes against stress-induced aggregation. Mol Biol Cell 17:387–401PubMedPubMedCentralCrossRefGoogle Scholar
  137. Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141–1149PubMedPubMedCentralCrossRefGoogle Scholar
  138. Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48PubMedCrossRefGoogle Scholar
  139. Ray S, Sarkar S, Kundu S (2011) Extracellular biosynthesis of silver nanoparticles using the mycorrhhizal mushroom Tricholoma crassum (BERK.) SACC: its antimicrobial activity against pathogenic bacteria and fungus, including multidrug resistant plant and human bacteria. Digest J Nanomater Biostruct 6:1289–1299Google Scholar
  140. Reese RN, Winge DR (1988) Sulfide stabilization of the cadmium-gamma-glutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem 263:12832–12835PubMedGoogle Scholar
  141. Roveri A, Maiorino M, Ursini F (1994) Enzymatic and immunological measurements of soluble and membrane-bound phospholipid-hydroperoxide glutathione peroxidases. Methods Enzymol 233:202–212PubMedCrossRefGoogle Scholar
  142. Saifuddin N, Wong CW, Yasumira AAN (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6:61–70CrossRefGoogle Scholar
  143. Salt DE, Wagner GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J Biol Chem 268:12297–12302PubMedGoogle Scholar
  144. Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresource Technol 100:501–504CrossRefGoogle Scholar
  145. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci India 85:162–170Google Scholar
  146. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/ glutathione couple. Free Radic Biol Med 30:1191–1212PubMedCrossRefGoogle Scholar
  147. Schlosser D, Höfer C (2002) Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Appl Environ Microbiol 68:3514–3521PubMedPubMedCentralCrossRefGoogle Scholar
  148. Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727CrossRefGoogle Scholar
  149. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1:517–520PubMedCrossRefGoogle Scholar
  150. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943CrossRefGoogle Scholar
  151. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  152. Shanti SS, Karl JD (2006) The significance of amino acids and amino acid derived molecules in plant responses and adaptation to heavy metal stress. J Exp Botany 57:711–726CrossRefGoogle Scholar
  153. Sharma KG, Mason DL, Liu G, Rea PA, Bachhawat AK, Michaelis S (2002) Localization, regulation, and substrate transport properties of Bpt1p, a Saccharomyces cerevisiae MRP-type ABC transporter. Eukaryotic Cell 1:391–400PubMedPubMedCentralCrossRefGoogle Scholar
  154. Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16PubMedPubMedCentralCrossRefGoogle Scholar
  155. Shi ZZ, Osei-Frimpong J, Kala G, Kala SV, Barrios RJ (2000) Glutathione synthesis is essential for mouse development but not for cell growth in culture. Proc Natl Acad Sci USA 97:5101–5106PubMedPubMedCentralCrossRefGoogle Scholar
  156. Shin HS, Yang HJ, Kim SB, Lee SS (2004) Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitratesolution. J Colloid Interface Sci 274:89–94PubMedCrossRefGoogle Scholar
  157. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919PubMedCrossRefGoogle Scholar
  158. Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33:159–164PubMedCrossRefGoogle Scholar
  159. Southam G, Beveridge TJ (1994) The in vitro formation of placer gold by bacteria. Geochim Cosmochim Acta 58:4527–4530CrossRefGoogle Scholar
  160. Srikanth CV, Vats P, Bourbouloux A, Delrot S, Bachhawat AK (2005) Multiple cis-regulatory elements and the yeast sulphur regulatory network are required for the regulation of the yeast GSH transporter, Hgt1p. Curr Genet 47:345–358PubMedCrossRefGoogle Scholar
  161. Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218PubMedCrossRefGoogle Scholar
  162. Stadtman ER, Moskovitz J, Levine RL (2003) Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Signal 5:577–582PubMedCrossRefGoogle Scholar
  163. Stephen DW, Jamieson DJ (1997) Amino acid-dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide. Mol Microbiol 23:203–210PubMedCrossRefGoogle Scholar
  164. Suman V, Prasad R, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191Google Scholar
  165. Tamás MJ, Labarre J, Toledano MB, Wysocki R (2005) Mechanisms of toxic metal tolerance in yeast. In: Tamás MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification: from microbes to man. Springer, HeidelbergGoogle Scholar
  166. Tanvir S, Oudet F, Pulvin S, Anderson WA (2012) Coenzyme based synthesis of silver nanocrystals. Enzyme Microb Technol 51:231–236PubMedCrossRefGoogle Scholar
  167. Tripathi AK, Harsh NSK, Gupta N (2007) Fungal treatment of industrial effluents: a mini-review. Life Sci J 4:78–81Google Scholar
  168. Trotter EW, Grant CM (2005) Overlapping roles of the cytoplasmic and mitochondrial redoc regulatory systems in the yeast Saccharomyces cerevisiae. Eukaryot Cell 4:392–400PubMedPubMedCentralCrossRefGoogle Scholar
  169. Ulla AJ, Patrick AWV, Ulla SL, Roger DF (2000) Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytologist 146:557–567CrossRefGoogle Scholar
  170. Valtchev V, Tosheva L (2013) Porous nanosized particles: preparation, properties, and applications. Chem Rev 113:6734–6760PubMedCrossRefGoogle Scholar
  171. Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) At PCS1, a Phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110–7115PubMedPubMedCentralCrossRefGoogle Scholar
  172. Verbavatz JM, Vavasseur A, Forestier C (2009) A common highly conserved cadmium detoxification mechanism from bacteria to humans heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter sphmt1 requires glutathione but not metal-chelating phytochelatin peptides. J Biol Chem 284:4936–4943PubMedCrossRefGoogle Scholar
  173. Vesentini D, Dickinson DJ, Murphy RJ (2006) Fungicides affect the production of fungal extracellular mucilaginous material (ECMM) and the peripheral growth unit (PGU) in two woodrotting basidiomycetes. Mycol Res 110:1207–1213PubMedCrossRefGoogle Scholar
  174. Wang X, Zuo J, Keil P, Grundmeier G (2007) Comparing the growth of PVD silver nanoparticles on ultra thin fluorocarbon plasma polymer films and self-assembled fluoroalkyl silane monolayers. Nanotechnol 18:265303CrossRefGoogle Scholar
  175. Wemmie JA, Szczypka MS, Thiele DJ, Moye-Rowley WS (1994) Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J Biol Chem 269:32592–32597PubMedGoogle Scholar
  176. Westwater J, McLaren NF, Dormer UH, Jamieson DJ (2002) The adaptive response of Saccharomyces cerevisiae to mercury exposure. Yeast 19:233–239PubMedCrossRefGoogle Scholar
  177. Winkler BS, Orselli SM, Rex TS (1994) The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med 17:333–349PubMedCrossRefGoogle Scholar
  178. Wong CM, Siu KL, Jin DY (2004) Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J Biol Chem 22:23207–23213CrossRefGoogle Scholar
  179. Wood ZA, Schroder E, Harris JR, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sc 28:32–40CrossRefGoogle Scholar
  180. Wright SF, Franke-Snyder M, Morton JB, Upadhyaya A (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193–203CrossRefGoogle Scholar
  181. Wu AL, Moye-Rowley WS (1994) GSH1, which encodes γ-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation. Mol Cell Biol 14:5832–5839PubMedPubMedCentralCrossRefGoogle Scholar
  182. Wysocki R, Tamás MJ (2010) How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 34:925–951PubMedCrossRefGoogle Scholar
  183. Xie H, Lee JY, Wang DIC, Ting YP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1:429–439PubMedCrossRefGoogle Scholar
  184. Yompakdee C, Bun-ya M, Shikata K, Ogawa N, Harashima S, Oshima Y (1996) A putative new membrane protein, Pho86p, in the inorganic phosphate uptake system of Saccharomyces cerevisiae. Gene 171:41–47PubMedCrossRefGoogle Scholar
  185. Zenk MH (1996) Heavy metal detoxification in higher plants-a review. Gene 179:21–30PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Aryabhatta Centre for Nanoscience and NanotechnologyAryabhatta Knowledge UniversityPatnaIndia

Personalised recommendations