Consensus-Based Clustering in Numerical Decision-Making

  • José Luis García-Lapresta
  • David Pérez-Román
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 456)


In this paper, we consider that a set of agents assess a set of alternatives through numbers in the unit interval. In this setting, we introduce a measure that assigns a degree of consensus to each subset of agents with respect to every subset of alternatives. This consensus measure is defined as 1 minus the outcome generated by a symmetric aggregation function to the distances between the corresponding individual assessments. We establish some properties of the consensus measure, some of them depending on the used aggregation function. We also introduce an agglomerative hierarchical clustering procedure that is generated by similarity functions based on the previous consensus measures.


Linear Order Unit Interval Gini Index Aggregation Function Weak Order 



The authors gratefully acknowledge the funding support of the Spanish Ministerio de Economía y Competitividad (project ECO2012-32178) and Consejería de Educación de la Junta de Castilla y León (project VA066U13).


  1. 1.
    Ackerman M, Ben-David S (2009) Measures of clustering quality: a working set of axioms for clustering. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems, vol 21. Curran Associates, Inc., pp 121–128Google Scholar
  2. 2.
    Alcalde-Unzu J, Vorsatz M (2013) Measuring the cohesiveness of preferences: an axiomatic analysis. Soc Choice Welfare 41:965–988MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alcantud JCR, de Andrés R, Cascón JM (2013) On measures of cohesiveness under dichotomous opinions: some characterizations of approval consensus measures. Inf Sci 240:45–55MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Beliakov G, Bustince Sola H, Calvo Sánchez T (2016) A practical guide to averaging functions. Springer, HeidelbergCrossRefGoogle Scholar
  5. 5.
    Beliakov G, Pradera A, Calvo T (2007) Aggregation functions: a guide for practitioners. Springer, HeidelbergMATHGoogle Scholar
  6. 6.
    Bosch R (2005) Characterizations of voting rules and consensus measures. PhD Dissertation, Tilburg UniversityGoogle Scholar
  7. 7.
    Erdamar B, García-Lapresta JL, Pérez-Román D, Sanver MR (2014) Measuring consensus in a preference-approval context. Inf Fusion 17:14–21CrossRefGoogle Scholar
  8. 8.
    Everitt BS, Landau S, Leese M (2001) Cluster analysis, 4th edn. Oxford University Press, New YorkMATHGoogle Scholar
  9. 9.
    García-Lapresta JL, Pérez-Román D (2011) Measuring consensus in weak orders. In: Herrera-Viedma E, García-Lapresta JL, Kacprzyk J, Nurmi H, Fedrizzi M, Zadr\(\dot{\rm {o}}\)zny S (eds) Consensual Processes, STUDFUZZ, vol 267. Springer-Verlag, Berlin, pp 213–234Google Scholar
  10. 10.
    García-Lapresta JL, Pérez-Román D (2015) Ordinal proximity measures in the context of unbalanced qualitative scales and some applications to consensus and clustering. Appl Soft Comput 35:864–872CrossRefGoogle Scholar
  11. 11.
    García-Lapresta JL, Pérez-Román D (2016) Consensus-based clustering under hesitant qualitative assessments. Fuzzy Sets Syst 292:261–273MathSciNetCrossRefGoogle Scholar
  12. 12.
    García-Lapresta JL, Pérez-Román D, Falcó E (2014) Consensus reaching processes under hesitant linguistic assessments. In: Angelov P et al (eds) Intelligent systems’ 2014. Advances in intelligent systems and computing, vol 322, pp 257–268Google Scholar
  13. 13.
    Gini C (1912) Variabilità e Mutabilità. Tipografia di Paolo Cuppini, BolognaGoogle Scholar
  14. 14.
    Grabisch M, Marichal JL, Mesiar R, Pap E (2009) Aggregation functions. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  15. 15.
    Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323CrossRefGoogle Scholar
  16. 16.
    Martínez-Panero M (2011) Consensus perspectives: Glimpses into theoretical advances and applications. In: Herrera-Viedma E, García-Lapresta JL, Kacprzyk J, Nurmi H, Fedrizzi M, Zadr\(\dot{\rm {o}}\)zny S (eds) Consensual Processes, STUDFUZZ, vol 267. Springer-Verlag, Berlin, pp 179–193Google Scholar
  17. 17.
    Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • José Luis García-Lapresta
    • 1
  • David Pérez-Román
    • 2
  1. 1.PRESAD Research Group, BORDA Research Unit, IMUVA, Dept. de Economía AplicadaUniversidad de ValladolidValladolidSpain
  2. 2.PRESAD Research Group, BORDA Research Unit, Dep. de Organización de Empresas y C.I.M.Universidad de ValladolidValladolidSpain

Personalised recommendations