Skip to main content

Historical Development of STAT3 Inhibitors and Early Results in Clinical Trials

  • Chapter
  • First Online:
STAT Inhibitors in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Since the initial reports of constitutive STAT3 activation in cells transformed by viral oncoproteins, the critical role of STAT3 signaling in human cancers has been firmly established. Detailed understanding of how STAT3 activity is tightly regulated by the balance between activating and inhibitory circuits provides important insights of how STAT3 becomes deregulated in cancer cells. A large number of STAT3 inhibitors have been developed. The predominant emphasis of the early rational drug discovery strategies was on disrupting phospho-tyrosine (pY) interactions with the Src-homology 2 (SH2) domain due to its requirement for STAT3:STAT3 dimerization and STAT3 function. Following the first reported direct STAT3 inhibitor peptide, PpYLKTK and its derivatives and peptidomimetics, several other peptides, peptide mimetics, and small molecules have been developed. However, their slow clinical development is in a large part due to the significant challenges of targeting transcription factors by disrupting protein:protein interactions. Two other major strategies to directly target STAT3 signaling are the decoy oligodeoxynucleotide (ODN) and antisense oligonucleotide (ASO) approaches, which have their own challenges for clinical development relating to their physicochemcial properties. Moreover, a large variety of natural products have been found to inhibit STAT3 signaling pathways and tumor growth, although their precise mechanisms of action are often unclear. Tyrosine kinase inhibitors (TKIs), which impact STAT3 signaling indirectly through their inibitory effects on tyrosine phosphorylation, are the most advanced in clinical trials to date. Several TKIs are at various stages of clincal evaluation for safety and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Article  CAS  PubMed  Google Scholar 

  2. Akira S, Nishio Y, Inoue M et al (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63–71

    Article  CAS  PubMed  Google Scholar 

  3. Turkson J, Jove R (2000) STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19:6613–6626

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell Death Differ 144:646–674

    CAS  Google Scholar 

  5. Yu C-L, Meyer DJ, Campbell GS et al (1995) Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269:81–83

    Article  CAS  PubMed  Google Scholar 

  6. Migone TS, Lin JX, Cereseto A et al (1995) Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269:79–81

    Article  CAS  PubMed  Google Scholar 

  7. Levy DE, Lee CK (2002) What does Stat3 do? J Clin Invest 109:1143–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu H, Jove R (2004) The STATS of cancer—new molecular targets come of age. Nat Rev Cancer 4:97–105

    Article  CAS  PubMed  Google Scholar 

  9. Bromberg JF, Wrzeszczynska MH, Devgan G et al (1999) Stat3 as an oncogene. Cell 98:295–303

    Article  CAS  PubMed  Google Scholar 

  10. Pilati C, Amessou M, Bihl MP et al (2011) Somatic mutations activating STAT3 in human inflammatory hepatocellular adenomas. J Exp Med 208:1359–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koskela HL, Eldfors S, Ellonen P et al (2012) Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med 366:1905–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jerez A, Clemente MJ, Makishima H et al (2012) STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood 120:3048–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chueh F-Y, Cronk RJ, Alsuwaidan AN et al (2014) Mouse LSTRA leukemia as a model of human natural killer T cell and highly aggressive lymphoid malignancies. Leuk Lymphoma 55:706–708

    Article  PubMed  Google Scholar 

  14. Yu C-L, Jove R, Burakoff SJ (1997) Constitutive activation of the Janus kinase-STAT pathway in T lymphoma overexpressing the Lck protein tyrosine kinase. J Immunol 159:5206–5210

    CAS  PubMed  Google Scholar 

  15. Jechlinger M, Sommer A, Moriggl R et al (2006) Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 116:1561–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yue P, Zhang X, Paladino D et al (2012) Hyperactive EGF receptor, Jaks and Stat3 signaling promote enhanced colony-forming ability, motility and migration of cisplatin-resistant ovarian cancer cells. Oncogene 31:2309–2322

    Article  CAS  PubMed  Google Scholar 

  17. Decker T, Kovarik P (2000) Serine phosphorylation of STATs. Oncogene 19:2628–2637

    Article  CAS  PubMed  Google Scholar 

  18. Yuan ZL, Guan YJ, Chatterjee D et al (2005) Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307:269–273

    Article  CAS  PubMed  Google Scholar 

  19. He B, You L, Uematsu K et al (2003) SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci U S A 100:14133–14138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Veeriah S, Brennan C, Meng S et al (2009) The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci U S A 106:9435–9440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang X, Guo A, Yu J et al (2007) Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase. Proc Natl Acad Sci U S A 104:4060–4064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun S, Steinberg BM (2002) PTEN is a negative regulator of STAT3 activation in human papillomavirus-infected cells. J Gen Virol 83:1651–1658

    Article  CAS  PubMed  Google Scholar 

  23. Irie-Sasaki J, Sasaki T, Matsumoto W et al (2001) CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409:349–354

    Article  CAS  PubMed  Google Scholar 

  24. Fukushima A, Loh K, Galic S et al (2010) T-cell protein tyrosine phosphatase attenuates STAT3 and insulin signaling in the liver to regulate gluconeogenesis. Diabetes 59:1906–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ren F, Geng Y, Minami T et al (2015) Nuclear termination of STAT3 signaling through SIPAR (STAT3-interacting protein as a repressor)-dependent recruitment of T cell tyrosine phosphatase TC-PTP. FEBS Lett 589:1890–1896

    Article  CAS  PubMed  Google Scholar 

  26. Östman A, Hellberg C, Böhmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6:307–320

    Article  PubMed  CAS  Google Scholar 

  27. Chung CD, Liao J, Liu B et al (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278:1803–1805

    Article  CAS  PubMed  Google Scholar 

  28. Brantley EC, Nabors LB, Gillespie GY et al (2008) Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: implications for STAT-3 activation and gene expression. Clin Cancer Res 14:4694–4704

    Article  CAS  PubMed  Google Scholar 

  29. Abbas R, McColl KS, Kresak A et al (2015) PIAS3 expression in squamous cell lung cancer is low and predicts overall survival. Cancer Med 4:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alvarez JV, Febbo PG, Ramaswamy S et al (2005) Identification of a genetic signature of activated signal transducer and activator of transcription 3 in human tumors. Cancer Res 65:5054–5062

    Article  CAS  PubMed  Google Scholar 

  31. Carpenter RL, Lo H-W (2014) STAT3 target genes relevant to human cancers. Cancers (Basel) 6:897–925

    Article  CAS  Google Scholar 

  32. Dauer DJ, Ferraro B, Song L et al (2005) Stat3 regulates genes common to both wound healing and cancer. Oncogene 24:3397–3408

    Article  CAS  PubMed  Google Scholar 

  33. Demaria M, Giorgi C, Lebiedzinska M et al (2010) A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging (Albany NY) 2:823–842

    Article  CAS  Google Scholar 

  34. Wegrzyn J, Potla R, Chwae Y-J et al (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meier JA, Larner AC (2014) Toward a new STATe: the role of STATs in mitochondrial function. Semin Immunol 26:20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gough DJ, Corlett A, Schlessinger K et al (2009) Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324:1713–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mackenzie GG, Huang L, Alston N et al (2013) Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112) inhibits pancreatic cancer growth in mice. PLoS One 8:e61532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ralph SJ, Rodriguez-Enriquez S, Neuzil J et al (2010) The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation—why mitochondria are targets for cancer therapy. Mol Aspects Med 31:145–170

    Article  CAS  PubMed  Google Scholar 

  39. Boengler K, Hilfiker-Kleiner D, Heusch G (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mantel C, Messina-Graham S, Moh A et al (2012) Mouse hematopoietic cell-targeted STAT3 deletion: stem/progenitor cell defects, mitochondrial dysfunction, ROS overproduction, and a rapid aging-like phenotype. Blood 120:2589–2599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Macias E, Rao D, Carbajal S et al (2014) Stat3 binds to mtDNA and regulates mitochondrial gene expression in keratinocytes. J Invest Dermatol 134:1971–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chueh F-Y, Leong K-F, Yu C-L (2010) Mitochondrial translocation of signal transducer and activator of transcription 5 (STAT5) in leukemic T cells and cytokine-stimulated cells. Biochem Biophys Res Commun 402:778–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Turkson J, Kim JS, Zhang S et al (2004) Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol Cancer Ther 3:261–269

    CAS  PubMed  Google Scholar 

  44. Turkson J, Ryan D, Kim JS et al (2001) Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J Biol Chem 276:45443–45455

    Article  CAS  PubMed  Google Scholar 

  45. Turkson J (2004) STAT proteins as novel targets for cancer drug discovery. Expert Opin Ther Targets 8:409–422

    Article  CAS  PubMed  Google Scholar 

  46. Siddiquee KA, Gunning PT, Glenn M et al (2007) An oxazole-based small-molecule Stat3 inhibitor modulates Stat3 stability and processing and induces antitumor cell effects. ACS Chem Biol 2:787–798

    Article  CAS  PubMed  Google Scholar 

  47. Ren Z, Cabell LA, Schaefer TS et al (2003) Identification of a high-affinity phosphopeptide inhibitor of Stat3. Bioorg Med Chem Lett 13:633–636

    Article  CAS  PubMed  Google Scholar 

  48. McMurray JS (2008) Structural basis for the binding of high affinity phosphopeptides to Stat3. Biopolymers 90:69–79

    Article  CAS  PubMed  Google Scholar 

  49. Coleman DRI, Ren Z, Mandal PK et al (2005) Investigation of the binding determinants of phosphopeptides targeted to the Src homology 2 domain of the Signal transducer and activator of transcription 3. Development of a high-affinity peptide inhibitor. J Med Chem 48:6661–6670

    Article  CAS  PubMed  Google Scholar 

  50. Zhao W, Jaganathan S, Turkson J (2010) A cell-permeable Stat3 SH2 domain mimetic inhibits Stat3 activation and induces antitumor cell effects in vitro. J Biol Chem 285:35855–35865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen J, Bai L, Bernard D et al (2010) Structure-based design of conformationally constrained, cell-permeable STAT3 inhibitors. ACS Med Chem Lett 1:85–89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mandal PK, Gao F, Lu Z et al (2011) Potent and selective phosphopeptide mimetic prodrugs targeted to the Src homology 2 (SH2) domain of signal transducer and activator of transcription 3. J Med Chem 54:3549–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gunning PT, Katt WP, Glenn M et al (2007) Isoform selective inhibition of STAT1 or STAT3 homo-dimerization via peptidomimetic probes: structural recognition of STAT SH2 domains. Bioorg Med Chem Lett 17:1875–1878

    Article  CAS  PubMed  Google Scholar 

  54. Gunning PT, Glenn MP, Siddiquee KA et al (2008) Targeting protein–protein interactions: suppression of Stat3 dimerization with rationally designed small-molecule, nonpeptidic SH2 domain binders. Chembiochem 9:2800–2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mandal PK, Liao WS, McMurray JS (2009) Synthesis of phosphatase-stable, cell-permeable peptidomimetic prodrugs that target the SH2 domain of Stat3. Org Lett 11:3394–3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pathak AK, Bhutani M, Nair AS et al (2007) Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Mol Cancer Res 5:943–955

    Article  CAS  PubMed  Google Scholar 

  57. Auzenne EJ, Klostergaard J, Mandal PK et al (2012) A phosphopeptide mimetic prodrug targeting the SH2 domain of Stat3 inhibits tumor growth and angiogenesis. J Exp Ther Oncol 10:155–162

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Song H, Wang R, Wang S (2005) A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci U S A 102:4700–4705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fuh B, Sobo M, Cen L et al (2009) LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model. Br J Cancer 100:106–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Siddiquee K, Zhang S, Guida WC et al (2007) Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci U S A 104:7391–7396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang X, Yue P, Fletcher S et al (2010) A novel small-molecule disrupts Stat3 SH2 domain-phosphotyrosine interactions and Stat3-dependent tumor processes. Biochem Pharmacol 79:1398–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang X, Yue P, Page BD et al (2012) Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc Natl Acad Sci U S A 109:9623–9628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang X, Sun Y, Pireddu R et al (2013) A novel inhibitor of STAT3 homodimerization selectively suppresses STAT3 activity and malignant transformation. Cancer Res 73:1922–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yue P, Lopez-Tapia F, Paladino D et al (2015) Hydroxamic acid and benzoic acid-based Stat3 inhibitors suppress human glioma and breast cancer phenotypes in vitro and in vivo. Cancer Res 58:7734–7748

    Google Scholar 

  65. Dave B, Landis MD, Tweardy DJ et al (2012) Selective small molecule Stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a human-xenograft model. PLoS One 7:e30207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schust J, Sperl B, Hollis A et al (2006) Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 13:1235–1242

    Article  CAS  PubMed  Google Scholar 

  67. Ashizawa T, Miyata H, Ishii H et al (2011) Antitumor activity of a novel small molecule STAT3 inhibitor against a human lymphoma cell line with high STAT3 activation. Int J Oncol 38:1245–1252

    CAS  PubMed  Google Scholar 

  68. Matsuno K, Masuda Y, Uehara Y et al (2010) Identification of a new series of STAT3 inhibitors by virtual screening. ACS Med Chem Lett 1:371–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen H, Yang Z, Ding C et al (2013) Fragment-based drug design and identification of HJC0123, a novel orally bioavailable STAT3 inhibitor for cancer therapy. Eur J Med Chem 62:498–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen H, Yang Z, Ding C et al (2013) Discovery of O-alkylamino tethered niclosamide derivatives as potent and orally bioavailable anticancer agents. ACS Med Chem Lett 4:180–185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhang M, Zhu W, Ding N et al (2013) Identification and characterization of small molecule inhibitors of signal transducer and activator of transcription 3 (STAT3) signaling pathway by virtual screening. Bioorg Med Chem Lett 23:2225–2229

    Article  CAS  PubMed  Google Scholar 

  72. Horiguchi A, Asano T, Kuroda K et al (2010) Stat3 inhibitor WP1066 as a novel therapeutic agent for renal cell carcinoma. Br J Cancer 102:1592–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mencalha AL, Du Rocher B, Salles D et al (2010) LLL-3, a STAT3 inhibitor, represses BCR-ABL-positive cell proliferation, activates apoptosis and improves the effects of Imatinib mesylate. Cancer Chemother Pharmacol 65:1039–1046

    Article  CAS  PubMed  Google Scholar 

  74. Lin L, Hutzen B, Li PK et al (2010) A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activities and exhibits potent growth-suppressive activity in human cancer cells. Neoplasia 12:39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Assi HH, Paran C, VanderVeen N et al (2014) Preclinical characterization of signal transducer and activator of transcription 3 small molecule inhibitors for primary and metastatic brain cancer therapy. J Pharmacol Exp Ther 349:458–469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Madoux F, Koenig M, Sessions H et al (2009–2010) Modulators of STAT transcription factors for the targeted therapy of cancer (STAT3 inhibitors). Probe Reports from the NIH Molecular Libraries Program [Internet]. National Center for Biotechnology Information (US), Bethesda, MD; 2009–2010, 28 Aug (updated 2011 Mar 25)

    Google Scholar 

  77. Bendell JC, Hong DS, Burris HA 3rd et al (2014) Phase 1, open-label, dose-escalation, and pharmacokinetic study of STAT3 inhibitor OPB-31121 in subjects with advanced solid tumors. Cancer Chemother Pharmacol 74:125–130

    Article  CAS  PubMed  Google Scholar 

  78. Brambilla L, Genini D, Laurini E et al (2015) Hitting the right spot: mechanism of action of OPB-31121, a novel and potent inhibitor of the signal transducer and activator of transcription 3 (STAT3). Mol Oncol 9:1194–1206

    Article  CAS  PubMed  Google Scholar 

  79. Hayakawa F, Sugimoto K, Harada Y et al (2013) A novel STAT inhibitor, OPB-31121, has a significant antitumor effect on leukemia with STAT-addictive oncokinases. Blood Cancer J 3, e166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim MJ, Nam HJ, Kim HP et al (2013) OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells. Cancer Lett 335:145–152

    Article  CAS  PubMed  Google Scholar 

  81. Ogura M, Uchida T, Terui Y et al (2015) Phase I study of OPB-51602, an oral inhibitor of signal transducer and activator of transcription 3, in patients with relapsed/refractory hematological malignancies. Cancer Sci 106:896–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Oh DY, Lee SH, Han SW et al (2015) Phase I study of OPB-31121, an oral STAT3 inhibitor, in patients with advanced solid tumors. Cancer Res Treat 47:607–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Okusaka T, Ueno H, Ikeda M et al (2015) Phase 1 and pharmacological trial of OPB-31121, a signal transducer and activator of transcription-3 inhibitor, in patients with advanced hepatocellular carcinoma. Hepatol Res 45:1283–1291

    Article  CAS  PubMed  Google Scholar 

  84. Huang W, Dong Z, Chen Y et al (2016) Small-molecule inhibitors targeting the DNA-binding domain of STAT3 suppress tumor growth, metastasis and STAT3 target gene expression in vivo. Oncogene 35:783–792

    Article  CAS  PubMed  Google Scholar 

  85. Daka P, Liu A, Karunaratne C et al (2015) Design, synthesis and evaluation of XZH-5 analogues as STAT3 inhibitors. Bioorg Med Chem 23:1348–1355

    Article  CAS  PubMed  Google Scholar 

  86. Liu A, Liu Y, Jin Z et al (2012) XZH-5 inhibits STAT3 phosphorylation and enhances the cytotoxicity of chemotherapeutic drugs in human breast and pancreatic cancer cells. PLoS One 7(10):e46624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu A, Liu Y, Xu Z et al (2011) Novel small molecule, XZH-5, inhibits constitutive and interleukin-6-induced STAT3 phosphorylation in human rhabdomyosarcoma cells. Cancer Sci 102:1381–1387

    Article  CAS  PubMed  Google Scholar 

  88. Yu W, Xiao H, Lin J et al (2013) Discovery of novel STAT3 small molecule inhibitors via in silico site-directed fragment-based drug design. J Med Chem 56:4402–4412

    Article  CAS  PubMed  Google Scholar 

  89. Leung KH, Liu LJ, Lin S et al (2015) Discovery of a small-molecule inhibitor of STAT3 by ligand-based pharmacophore screening. Methods 71:38–43

    Article  CAS  PubMed  Google Scholar 

  90. Zhang M, Zhu W, Li Y (2013) Discovery of novel inhibitors of signal transducer and activator of transcription 3 (STAT3) signaling pathway by virtual screening. Eur J Med Chem 62:301–310

    Article  CAS  PubMed  Google Scholar 

  91. Chen H, Yang Z, Ding C et al (2014) Discovery of potent anticancer agent HJC0416, an orally bioavailable small molecule inhibitor of signal transducer and activator of transcription 3 (STAT3). Eur J Med Chem 82:195–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rath KS, Naidu SK, Lata P et al (2014) HO-3867, a safe STAT3 inhibitor, is selectively cytotoxic to ovarian cancer. Cancer Res 74:2316–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Selvendiran K, Ahmed S, Dayton A et al (2011) HO-3867, a curcumin analog, sensitizes cisplatin-resistant ovarian carcinoma, leading to therapeutic synergy through STAT3 inhibition. Cancer Biol Ther 12:837–845

    Article  CAS  PubMed  Google Scholar 

  94. Pallandre JR, Borg C, Rognan D et al (2015) Novel aminotetrazole derivatives as selective STAT3 non-peptide inhibitors. Eur J Med Chem 103:163–174

    Article  CAS  PubMed  Google Scholar 

  95. Turkson J, Zhang S, Mora LB et al (2005) A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells. J Biol Chem 280:32979–32988

    Article  CAS  PubMed  Google Scholar 

  96. Turkson J, Zhang S, Palmer J et al (2004) Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent anti-tumor activity. Mol Cancer Ther 3:1533–1542

    CAS  PubMed  Google Scholar 

  97. Wong AL, Soo RA, Tan DS et al (2015) Phase I and biomarker study of OPB-51602, a novel signal transducer and activator of transcription (STAT) 3 inhibitor, in patients with refractory solid malignancies. Ann Oncol 26:998–1005

    Article  CAS  PubMed  Google Scholar 

  98. Sen M, Tosca PJ, Zwayer C et al (2009) Lack of toxicity of a STAT3 decoy oligonucleotide. Cancer Chemother Pharmacol 63:983–995

    Article  CAS  PubMed  Google Scholar 

  99. Souissi I, Ladam P, Cognet JA et al (2012) A STAT3-inhibitory hairpin decoy oligodeoxynucleotide discriminates between STAT1 and STAT3 and induces death in a human colon carcinoma cell line. Mol Cancer 11:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sen M, Joyce S, Panahandeh M et al (2012) Targeting Stat3 abrogates EGFR inhibitor resistance in cancer. Clin Cancer Res 18:4986–4996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lui VW, Boehm AL, Koppikar P et al (2007) Antiproliferative mechanisms of a transcription factor decoy targeting signal transducer and activator of transcription (STAT) 3: the role of STAT1. Mol Pharmacol 71:1435–1443

    Article  CAS  PubMed  Google Scholar 

  102. Niu G, Wright KL, Huang M et al (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21:2000–2008

    Article  CAS  PubMed  Google Scholar 

  103. Li WC, Ye SL, Sun RX et al (2006) Inhibition of growth and metastasis of human hepatocellular carcinoma by antisense oligonucleotide targeting signal transducer and activator of transcription 3. Clin Cancer Res 12:7140–7148

    Article  CAS  PubMed  Google Scholar 

  104. Barton BE, Murphy TF, Shu P et al (2004) Novel single-stranded oligonucleotides that inhibit signal transducer and activator of transcription 3 induce apoptosis in vitro and in vivo in prostate cancer cell lines. Mol Cancer Ther 3:1183–1191

    CAS  PubMed  Google Scholar 

  105. Burel SA, Han SR, Lee HS et al (2013) Preclinical evaluation of the toxicological effects of a novel constrained ethyl modified antisense compound targeting signal transducer and activator of transcription 3 in mice and cynomolgus monkeys. Nucleic Acid Ther 23:213–227

    Article  CAS  PubMed  Google Scholar 

  106. Yang CL, Liu YY, Ma YG et al (2012) Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through Janus kinase-STAT3 signalling pathway. PLoS One 7:e37960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tu SP, Jin H, Shi JD et al (2012) Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila) 5:205–215

    Article  CAS  Google Scholar 

  108. Fossey SL, Bear MD, Lin J et al (2011) The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines. BMC Cancer 11:112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Onimoe GI, Liu A, Lin L et al (2012) Small molecules, LLL12 and FLLL32, inhibit STAT3 and exhibit potent growth suppressive activity in osteosarcoma cells and tumor growth in mice. Invest New Drugs 30:916–926

    Article  CAS  PubMed  Google Scholar 

  110. Tierney BJ, McCann GA, Cohn DE et al (2012) HO-3867, a STAT3 inhibitor induces apoptosis by inactivation of STAT3 activity in BRCA1-mutated ovarian cancer cells. Cancer Biol Ther 13:766–775

    Article  CAS  PubMed  Google Scholar 

  111. Lin L, Hutzen B, Zuo M et al (2010) Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res 70:2445–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bid HK, Oswald D, Li C et al (2012) Anti-angiogenic activity of a small molecule STAT3 inhibitor LLL12. PLoS One 7:e35513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lin L, Deangelis S, Foust E et al (2010) A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol Cancer 9:217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bill MA, Nicholas C, Mace TA et al (2012) Structurally modified curcumin analogs inhibit STAT3 phosphorylation and promote apoptosis of human renal cell carcinoma and melanoma cell lines. PLoS One 7:e40724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nam S, Xie J, Perkins A et al (2012) Novel synthetic derivatives of the natural product berbamine inhibit Jak2/Stat3 signaling and induce apoptosis of human melanoma cells. Mol Oncol 6:484–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang X, Song Y, Wu Y et al (2011) Indirubin inhibits tumor growth by antitumor angiogenesis via blocking VEGFR2-mediated JAK/STAT3 signaling in endothelial cell. Int J Cancer 129:2502–2511

    Article  CAS  PubMed  Google Scholar 

  117. Nam S, Buettner R, Turkson J et al (2005) Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proc Natl Acad Sci U S A 102:5998–6003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu L, Kritsanida M, Magiatis P et al (2012) A novel 7-bromoindirubin with potent anticancer activity suppresses survival of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Cancer Biol Ther 13:1255–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nam S, Wen W, Schroeder A et al (2012) Dual inhibition of Janus and Src family kinases by novel indirubin derivative blocks constitutively-activated Stat3 signaling associated with apoptosis of human pancreatic cancer cells. Mol Oncol 7:369–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Shakibaei M, Harikumar KB, Aggarwal BB (2009) Resveratrol addiction: to die or not to die. Mol Nutr Food Res 53:115–128

    Article  CAS  PubMed  Google Scholar 

  121. Li T, Wang W, Chen H et al (2010) Evaluation of anti-leukemia effect of resveratrol by modulating STAT3 signaling. Int Immunopharmacol 10:18–25

    Article  CAS  PubMed  Google Scholar 

  122. Kim JE, Kim HS, Shin YJ et al (2008) LYR71, a derivative of trimeric resveratrol, inhibits tumorigenesis by blocking STAT3-mediated matrix metalloproteinase 9 expression. Exp Mol Med 40:514–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang YP, Chang YL, Huang PI et al (2012) Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis. J Cell Physiol 227:976–993

    Article  CAS  PubMed  Google Scholar 

  124. Gupta SC, Kannappan R, Reuter S et al (2011) Chemosensitization of tumors by resveratrol. Ann N Y Acad Sci 1215:150–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Santandreu FM, Valle A, Oliver J et al (2011) Resveratrol potentiates the cytotoxic oxidative stress induced by chemotherapy in human colon cancer cells. Cell Physiol Biochem 28:219–228

    Article  CAS  PubMed  Google Scholar 

  126. Lin CL, Chen RF, Chen JY et al (2012) Protective effect of caffeic acid on paclitaxel induced anti-proliferation and apoptosis of lung cancer cells involves NF-kappaB pathway. Int J Mol Sci 13:6236–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kong LY, Gelbard A, Wei J et al (2010) Inhibition of p-STAT3 enhances IFN-alpha efficacy against metastatic melanoma in a murine model. Clin Cancer Res 16:2550–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sai K, Wang S, Balasubramaniyan V et al (2012) Induction of cell-cycle arrest and apoptosis in glioblastoma stem-like cells by WP1193, a novel small molecule inhibitor of the JAK2/STAT3 pathway. J Neurooncol 107:487–501

    Article  CAS  PubMed  Google Scholar 

  129. Lee HK, Seo IA, Shin YK et al (2009) Capsaicin inhibits the IL-6/STAT3 pathway by depleting intracellular gp130 pools through endoplasmic reticulum stress. Biochem Biophys Res Commun 382:445–450

    Article  CAS  PubMed  Google Scholar 

  130. Shin DS, Kim HN, Shin KD et al (2009) Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res 69:193–202

    Article  CAS  PubMed  Google Scholar 

  131. Kannaiyan R, Hay HS, Rajendran P et al (2011) Celastrol inhibits proliferation and induces chemosensitization through down-regulation of NF-kappaB and STAT3 regulated gene products in multiple myeloma cells. Br J Pharmacol 164:1506–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rajendran P, Li F, Shanmugam MK et al (2012) Celastrol suppresses growth and induces apoptosis of human hepatocellular carcinoma through the modulation of STAT3/JAK2 signaling cascade in vitro and in vivo. Cancer Prev Res (Phila) 5:631–643

    Article  CAS  Google Scholar 

  133. Zhang C, Li B, Gaikwad AS et al (2008) Avicin D selectively induces apoptosis and downregulates p-STAT-3, bcl-2, and survivin in cutaneous T-cell lymphoma cells. J Invest Dermatol 128:2728–2735

    Article  CAS  PubMed  Google Scholar 

  134. Lee J, Hahm ER, Singh SV (2010) Withaferin A inhibits activation of signal transducer and activator of transcription 3 in human breast cancer cells. Carcinogenesis 31:1991–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Um HJ, Min KJ, Kim DE et al (2012) Withaferin A inhibits JAK/STAT3 signaling and induces apoptosis of human renal carcinoma Caki cells. Biochem Biophys Res Commun 427:24–29

    Article  CAS  PubMed  Google Scholar 

  136. Pandey MK, Sung B, Aggarwal BB (2010) Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. Int J Cancer 127:282–292

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Shanmugam MK, Rajendran P, Li F et al (2011) Ursolic acid inhibits multiple cell survival pathways leading to suppression of growth of prostate cancer xenograft in nude mice. J Mol Med (Berl) 89:713–727

    Article  CAS  Google Scholar 

  138. Honda T, Rounds BV, Bore L et al (2000) Synthetic oleanane and ursane triterpenoids with modified rings A and C: a series of highly active inhibitors of nitric oxide production in mouse macrophages. J Med Chem 43:4233–4246

    Article  CAS  PubMed  Google Scholar 

  139. Duan Z, Ames RY, Ryan M et al (2009) CDDO-Me, a synthetic triterpenoid, inhibits expression of IL-6 and Stat3 phosphorylation in multi-drug resistant ovarian cancer cells. Cancer Chemother Pharmacol 63:681–689

    Article  CAS  PubMed  Google Scholar 

  140. Ryu K, Susa M, Choy E et al (2010) Oleanane triterpenoid CDDO-Me induces apoptosis in multidrug resistant osteosarcoma cells through inhibition of Stat3 pathway. BMC Cancer 10:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tran K, Risingsong R, Royce D et al (2012) The synthetic triterpenoid CDDO-methyl ester delays estrogen receptor-negative mammary carcinogenesis in polyoma middle T mice. Cancer Prev Res (Phila) 5:726–734

    Article  CAS  Google Scholar 

  142. Miklossy G, Youn UJ, Yue P et al (2015) Hirsutinolide series inhibit Stat3 activity, modulate GCN1, MAP1B, Hsp105, G6PD, Vimentin, and importin α-2 expression, and induce antitumor effects against human glioma. J Med Chem 58:7734–7748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Blaskovich MA, Sun J, Cantor A et al (2003) Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 63:1270–1279

    CAS  PubMed  Google Scholar 

  144. Liu T, Peng H, Zhang M et al (2010) Cucurbitacin B, a small molecule inhibitor of the Stat3 signaling pathway, enhances the chemosensitivity of laryngeal squamous cell carcinoma cells to cisplatin. Eur J Pharmacol 641:15–22

    Article  CAS  PubMed  Google Scholar 

  145. Dong Y, Lu B, Zhang X et al (2010) Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. Carcinogenesis 31:2097–2104

    Article  CAS  PubMed  Google Scholar 

  146. Chang CJ, Chiang CH, Song WS et al (2012) Inhibition of phosphorylated STAT3 by cucurbitacin I enhances chemoradiosensitivity in medulloblastoma-derived cancer stem cells. Childs Nerv Syst 28:363–373

    Article  PubMed  Google Scholar 

  147. Tseng LM, Huang PI, Chen YR et al (2012) Targeting signal transducer and activator of transcription 3 pathway by cucurbitacin I diminishes self-renewing and radiochemoresistant abilities in thyroid cancer-derived CD133+ cells. J Pharmacol Exp Ther 341:410–423

    Article  CAS  PubMed  Google Scholar 

  148. Sun C, Zhang M, Shan X et al (2010) Inhibitory effect of cucurbitacin E on pancreatic cancer cells growth via STAT3 signaling. J Cancer Res Clin Oncol 136:603–610

    Article  CAS  PubMed  Google Scholar 

  149. Huang WW, Yang JS, Lin MW et al (2012) Cucurbitacin E induces G(2)/M phase arrest through STAT3/p53/p21 signaling and provokes apoptosis via Fas/CD95 and mitochondria-dependent pathways in human bladder cancer T24 cells. Evid Based Complement Alternat Med 2012:952762

    PubMed  PubMed Central  Google Scholar 

  150. Hsu HS, Huang PI, Chang YL et al (2011) Cucurbitacin I inhibits tumorigenic ability and enhances radiochemosensitivity in nonsmall cell lung cancer-derived CD133-positive cells. Cancer 117:2970–2985

    Article  CAS  PubMed  Google Scholar 

  151. Li F, Fernandez PP, Rajendran P (2010) Diosgenin, a steroidal saponin, inhibits STAT3 signaling pathway leading to suppression of proliferation and chemosensitization of human hepatocellular carcinoma cells. Cancer Lett 292:197–207

    Article  CAS  PubMed  Google Scholar 

  152. Muthukumaran G, Kotenko S, Donnelly R (1997) Chimeric erythropoietin-interferon gamma receptors reveal differences in functional architecture of intracellular domains for signal transduction. J Biol Chem 272:4993–4999

    Article  CAS  PubMed  Google Scholar 

  153. Badr G, Mohany M, Abu-Tarboush F (2011) Thymoquinone decreases F-actin polymerization and the proliferation of human multiple myeloma cells by suppressing STAT3 phosphorylation and Bcl2/Bcl-XL expression. Lipids Health Dis 10:236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Li F, Rajendran P, Sethi G (2010) Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol 161:541–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Leeman-Neill RJ, Cai Q, Joyce SC et al (2010) Honokiol inhibits epidermal growth factor receptor signaling and enhances the antitumor effects of epidermal growth factor receptor inhibitors. Clin Cancer Res 16:2571–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rajendran P, Li F, Shanmugam MK et al (2012) Honokiol inhibits signal transducer and activator of transcription-3 signaling, proliferation, and survival of hepatocellular carcinoma cells via the protein tyrosine phosphatase SHP-1. J Cell Physiol 227:2184–2195

    Article  CAS  PubMed  Google Scholar 

  157. Liu SH, Wang KB, Lan KH et al (2012) Calpain/SHP-1 Interaction by Honokiol Dampening Peritoneal Dissemination of Gastric Cancer in nu/nu Mice. PLoS One 7:e43711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yang J, Cai X, Lu W et al (2012) Evodiamine inhibits STAT3 signaling by inducing phosphatase shatterproof 1 in hepatocellular carcinoma cells. Cancer Lett 328:243–251

    Article  PubMed  CAS  Google Scholar 

  159. Arbiser JL, Govindarajan B, Battle TE et al (2006) Carbazole is a naturally occurring inhibitor of angiogenesis and inflammation isolated from antipsoriatic coal tar. J Invest Dermatol 126:1396–1402

    Article  CAS  PubMed  Google Scholar 

  160. Saturnino C, Palladino C, Napoli M et al (2013) Synthesis and biological evaluation of new N-alkylcarbazole derivatives as STAT3 inhibitors: preliminary study. Eur J Med Chem 60:112–119

    Article  CAS  PubMed  Google Scholar 

  161. Sun M, Liu C, Nadiminty N et al (2012) Inhibition of Stat3 activation by sanguinarine suppresses prostate cancer cell growth and invasion. Prostate 72:82–89

    Article  CAS  PubMed  Google Scholar 

  162. Kannappan R, Yadav VR, Aggarwal BB (2010) gamma-Tocotrienol but not gamma-tocopherol blocks STAT3 cell signaling pathway through induction of protein-tyrosine phosphatase SHP-1 and sensitizes tumor cells to chemotherapeutic agents. J Biol Chem 285:33520–33528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Rajendran P, Li F, Manu KA et al (2011) gamma-Tocotrienol is a novel inhibitor of constitutive and inducible STAT3 signalling pathway in human hepatocellular carcinoma: potential role as an antiproliferative, pro-apoptotic and chemosensitizing agent. Br J Pharmacol 163:283–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kandala PK, Srivastava SK (2012) Regulation of Janus-activated kinase-2 (JAK2) by diindolylmethane in ovarian cancer in vitro and in vivo. Drug Discov Ther 6:94–101

    CAS  PubMed  Google Scholar 

  165. Kandala PK, Srivastava SK (2012) Diindolylmethane suppresses ovarian cancer growth and potentiates the effect of cisplatin in tumor mouse model by targeting signal transducer and activator of transcription 3 (STAT3). BMC Med 10:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Kunnumakkara AB, Nair AS, Sung B (2009) Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1. Mol Cancer Res 7:118–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Migita K, Miyashita T, Izumi Y et al (2011) Inhibitory effects of the JAK inhibitor CP690,550 on human CD4(+) T lymphocyte cytokine production. BMC Immunol 12:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Quintas-Cardama A, Vaddi K, Liu P et al (2010) Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 115:3109–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Looyenga BD, Hutchings D, Cherni I et al (2012) STAT3 is activated by JAK2 independent of key oncogenic driver mutations in non-small cell lung carcinoma. PLoS One 7:e30820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Derenzini E, Lemoine M, Buglio D et al (2011) The JAK inhibitor AZD1480 regulates proliferation and immunity in Hodgkin lymphoma. Blood Cancer J 1:e46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hedvat M, Huszar D, Herrmann A et al (2009) The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. McFarland BC, Ma JY, Langford CP et al (2011) Therapeutic potential of AZD1480 for the treatment of human glioblastoma. Mol Cancer Ther 10:2384–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Xin H, Herrmann A, Reckamp K et al (2011) Antiangiogenic and antimetastatic activity of JAK inhibitor AZD1480. Cancer Res 71:6601–6610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Faderl S, Ferrajoli A, Harris D et al (2007) Atiprimod blocks phosphorylation of JAK-STAT and inhibits proliferation of acute myeloid leukemia (AML) cells. Leuk Res 31:91–95

    Article  CAS  PubMed  Google Scholar 

  175. Amit-Vazina M, Shishodia S, Harris D et al (2005) Atiprimod blocks STAT3 phosphorylation and induces apoptosis in multiple myeloma cells. Br J Cancer 93:70–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Quintas-Cardama A, Manshouri T, Estrov Z et al (2011) Preclinical characterization of atiprimod, a novel JAK2 AND JAK3 inhibitor. Invest New Drugs 29:818–826

    Article  CAS  PubMed  Google Scholar 

  177. Kim NH, Lee MY, Park SJ et al (2007) Auranofin blocks interleukin-6 signalling by inhibiting phosphorylation of JAK1 and STAT3. Immunology 122:607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nakaya A, Sagawa M, Muto A et al (2011) The gold compound auranofin induces apoptosis of human multiple myeloma cells through both down-regulation of STAT3 and inhibition of NF-kappaB activity. Leuk Res 35:243–249

    Article  CAS  PubMed  Google Scholar 

  179. Sen M, Thomas SM, Kim S et al (2012) First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov 2:694–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hong D, Kurzrock R, Kim Y et al (2015) AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med 7:314ra185

    Article  PubMed  CAS  Google Scholar 

  181. Yu H, Lee H, Hermann A et al (2014) Revisiting STAT3 signaling in cancer: new and unexpected biological functions. Nat Rev Cancer 14:736–746

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Turkson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yu, CL., Jove, R., Turkson, J. (2016). Historical Development of STAT3 Inhibitors and Early Results in Clinical Trials. In: Ward, A. (eds) STAT Inhibitors in Cancer. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-42949-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42949-6_4

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-42947-2

  • Online ISBN: 978-3-319-42949-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics