Skip to main content

Atmospheric Signal Propagation

  • Chapter

Part of the Springer Handbooks book series (SHB)

Zusammenfassung

Global navigation satellite system (GlossaryTermGNSS ) satellites emit signals that propagate as electromagnetic waves through space to the receivers which are located on or near the Earth’s surface or on other satellites. Thereby, electromagnetic waves travel through the ionosphere and the neutral atmosphere (troposphere) which causes signals to be delayed, damped, and refracted as the refractivity index of the propagation media is not equal to one. In this chapter, the nature and effects of GNSS signal propagation in both the troposphere and the ionosphere, aref examined. After a brief review of the fundamentals of electromagnetic waves their propagation in refractive media, the effects of the neutral atmosphere are discussed. In addition, empirical correction models as well as the state-of-the-art atmosphere delay estimation approaches are presented. Effects related to signal propagation through the ionosphere are dealt in a dedicated section by describing the error contribution of the first up to third-order terms in the refractive index and ray path bending. After discussing diffraction and scattering phenomena due to ionospheric irregularities, mitigation techniques for different types of applications are presented.

Keywords

  • Global Position System
  • Global Navigation Satellite System
  • Global Navigation Satellite System
  • Total Electron Content
  • Vertical Total Electron Content

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-42928-1_6
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-42928-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3a–d
Fig. 6.4
Fig. 6.5a,b
Fig. 6.6
Fig. 6.7a–c
Fig. 6.8
Fig. 6.9
Fig. 6.10
Fig. 6.11
Fig. 6.12
Fig. 6.13a,b
Fig. 6.14
Fig. 6.15

Abbreviations

BDS:

BeiDou Navigation Satellite System

CCIR:

Comité Consultatif International des Radiocommunications

CODE:

Center for Orbit Determination in Europe

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

ECMWF:

European Centre for Medium-Range Weather Forecasts

EGNOS:

European Geostationary Navigation Overlay Service

EPB:

equatorial plasma bubble

EUV:

extreme ultraviolet

GFZ:

Deutsches GeoForschungsZentrum

GNSS:

global navigation satellite system

GPS:

Global Positioning System

GPT:

global pressure and temperature (model)

IERS:

International Earth Rotation and Reference Systems Service

IGS:

International GNSS Service

IOV:

in-orbit validation

IRI:

international reference ionosphere

LOS:

line-of-sight

NMF:

Niell mapping function

NWM:

numerical weather model

NWP:

numerical weather prediction

PDOP:

position dilution of precision

RMS:

root mean square

RTI:

Rayleigh-Taylor instability

SBAS:

satellite-based augmentation system

STEC:

slant total electron content

TEC:

total electron content

UNB:

University of New Brunswick

URSI:

International Union of Radio Science

VMF:

Vienna mapping function

VTEC:

vertical total electron content

WAAS:

Wide Area Augmentation System

ZHD:

zenith hydrostatic delay

ZWD:

zenith wet delay

References

  1. D.J. Griffiths: Introduction to Electrodynamics, 4th edn. (Addison-Wesley, Boston 2012)

    Google Scholar 

  2. J.D. Jackson: Classical Electrodynamics, 3rd edn. (John Wiley, New York 1998)

    Google Scholar 

  3. H.J. Liebe: MPM – An atmospheric millimeter-wave propagation model, Int. J. Infrared Millim. Wave 10(6), 631–650 (1989)

    CrossRef  Google Scholar 

  4. P. Debye: Polar Molecules (Dover, New York 1929)

    Google Scholar 

  5. K.G. Budden: The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere, 1st edn. (Cambridge Univ. Press, Cambridge 1985)

    CrossRef  Google Scholar 

  6. K. Davies: Ionospheric Radio (Peter Peregrinus, London 1990)

    CrossRef  Google Scholar 

  7. L. Essen, K.D. Froome: Dielectric constant and refractive index of air and its principal constituents at 24,0000 Mc/s, Nature 167, 512–513 (1951)

    CrossRef  Google Scholar 

  8. J.C. Owens: Optical refractive index of air: Dependence on pressure, temperature and composition, Appl. Opt. 6(1), 51–59 (1967)

    CrossRef  Google Scholar 

  9. J.M. Rüeger: Refractive index formula for radio waves, Proc. XXII FIG Int. Congr., Washington (FIG, Copenhagen 2002) pp. 1–13

    Google Scholar 

  10. J. Böhm, H. Schuh: Atmospheric Effects in Space Geodesy (Springer, Berlin 2013)

    CrossRef  Google Scholar 

  11. J. Saastamoinen: Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. In: The Use of Artificial Satellites for Geodesy, ed. by S.W. Henriksen, A. Mancini, B.H. Chovitz (AGU, Washington 1972) pp. 247–251

    Google Scholar 

  12. H. Berg: Allgemeine Meteorologie (Dümmler, Berlin 1948)

    Google Scholar 

  13. B. Hofmann-Wellenhof, H. Moritz: Physical Geodesy (Springer, Berlin 2006)

    Google Scholar 

  14. H.S. Hopfield: Two-quartic tropospheric refractivity profile for correcting satellite data, J. Geophys. Res. 74(18), 4487–4499 (1969)

    CrossRef  Google Scholar 

  15. R.F. Leandro, M.C. Santos, R.B. Langley: UNB neutral atmosphere models: Development and performance, Proc. ION NTM 2006, Monterey (ION, Virginia 2006) pp. 564–573

    Google Scholar 

  16. J. Boehm, R. Heinkelmann, H. Schuh: Short note: A global model of pressure and temperature for geodetic applications, J. Geodesy 81(10), 679–683 (2007)

    CrossRef  Google Scholar 

  17. K. Lagler, M. Schindelegger, J. Boehm, H. Krasna, T. Nilsson: GPT2: Empirical slant delay model for radio space geodetic techniques, Geophys. Res. Lett. 40(6), 1069–1073 (2013)

    CrossRef  Google Scholar 

  18. G. Petit, B. Luzum: IERS Conventions (2010) (Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt 2010), IERS Technical Note No. 36

    Google Scholar 

  19. United States Committee on Extension to the Standard Atmosphere: US Standard Atmosphere Supplements 1966 (US Govt. Print. Off., Washington 1966)

    Google Scholar 

  20. J.L. Davis, T.A. Herring, I.I. Shapiro, A.E.E. Rogers, G. Elgered: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci. 20, 1593–1607 (1985)

    CrossRef  Google Scholar 

  21. V.B. Mendes: Modeling the Neutral-Atmosphere Propagation Delay in Radiometric Space Techniques, Ph.D. Thesis (Univ. New Brunswick, Fredericton 1999)

    Google Scholar 

  22. C.C. Chao: A Model for Tropospheric Calibration from Daily Surface and Radiosonde Balloon Measurement, Tech. Mem. 391–350 (Jet Propulsion Laboratory, Pasadena 1972) pp. 67–73

    Google Scholar 

  23. C.C. Chao: New Tropospheric Range Corrections with Seasonal Adjustment, DSN Progr. Rep., JPL Report No. 32–1526, Vol. (Jet Propulsion Laboratory, Pasadena 1971) pp. 67–73

    Google Scholar 

  24. C.C. Chao: A New Method to Predict Wet Zenith Range Refraction from Surface Measurements of Meteorological Parameters, DSN Progr. Rep. No. 32–1526 (Jet Propulsion Laboratory, Pasadena 1973) pp. 33–41

    Google Scholar 

  25. H.S. Hopfield: The effect of tropospheric refraction on the Doppler shift of a satellite signal, J. Geophys. Res. 68(18), 5157–5168 (1961)

    CrossRef  Google Scholar 

  26. H.S. Hopfield: Tropospheric effect on electromagnetically measured range: Prediction from surface weather data, Radio Sci. 6(3), 357–367 (1972)

    CrossRef  Google Scholar 

  27. H.S. Hopfield: Tropospheric Effects on Signals at Very Low Elevation Angles (Appl. Phys. Lab., John Hopkins Univ., Laurel 1976), Tech. Memo. TG1291

    Google Scholar 

  28. H.S. Hopfield: Improvements in the tropospheric refraction correction for range measurement, Philos. Trans. R. Soc. Lond. 294(1410), 341–352 (1979)

    CrossRef  Google Scholar 

  29. J.W. Marini: Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Sci. 7(2), 223–231 (1972)

    CrossRef  Google Scholar 

  30. T.A. Herring: Modelling atmospheric delay in the analysis of space geodetic data. In: Symposium on Refraction of Transatmospheric Signals in Geodesy, Publications on Geodesy, No. 36, ed. by J.C. de Munck, T.A.T. Spoelstra (Netherlands Geodetic Commission, Delft 1992) pp. 157–164

    Google Scholar 

  31. A.E. Niell: Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res. 101(B2), 3227–3246 (1996)

    CrossRef  Google Scholar 

  32. L.P. Gradinarsky, J.M. Johansson, G. Elgered, P. Jarlemark: GPS site testing at Chajnantor in Chile, Phys. Chem. Earth 26(6–8), 421–426 (2001)

    CrossRef  Google Scholar 

  33. C. Rocken, S. Sokolovskiy, J.M. Johnson, D. Hunt: Improved mapping of tropospheric delays, J. Atmos. Ocean. Technol. 18, 1205–1213 (2001)

    CrossRef  Google Scholar 

  34. A.E. Niell: Improved atmospheric mapping functions for VLBI and GPS, Earth Planets Space 52, 699–702 (2000)

    CrossRef  Google Scholar 

  35. A.E. Niell: Global mapping functions for the atmosphere delay at radio wavelengths, Phys. Chem. Earth 26(6-8), 475–480 (2001)

    CrossRef  Google Scholar 

  36. J. Boehm, H. Schuh: Vienna mapping functions in VLBI analyses, Geophys. Res. Lett. 31(L01603), 1–4 (2004)

    Google Scholar 

  37. J. Boehm, B. Werl, H. Schuh: Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data, J. Geophys. Res. 111(B02406), 1–9 (2006)

    Google Scholar 

  38. Vienna University of Technology, GGOS Atmosphere: Atmosphere Delays (Vienna Univ. Technology, Vienna 2014) http://ggosatm.hg.tuwien.ac.at/delay.html

  39. L. Urquhart, M. Santos, F. Nievinski, J. Böhm: Generation and assessment of VMF1-type grids using North-American numerical weather models. In: Earth on the Edge: Science for a Sustainable Planet, ed. by C. Rizos, P. Willis (Springer, Berlin 2014) pp. 3–9

    CrossRef  Google Scholar 

  40. University of New Brunswick Vienna Mapping Function Service (Univ. New-Brunswick, Frederiction) http://unb-vmf1.gge.unb.ca/

  41. J. Böhm, A. Niell, P. Tregoning, H. Schuh: Global mapping function (GMF): A new empirical mapping function based on data from numerical weather model data, Geophys. Res. Lett. 33(L07304), 1–4 (2006)

    Google Scholar 

  42. P. Gegout, R. Biancale, L. Soudarin: Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere, J. Geodesy 85(6–8), 661–677 (2011)

    CrossRef  Google Scholar 

  43. Th. Hobiger, R. Ichikawa, T. Takasu, Y. Koyama, T. Kondo: Ray-traced troposphere slant delays for precise point positioning, Earth Planets Space 60(5), 1–4 (2008)

    CrossRef  Google Scholar 

  44. F.G. Nievinski: Ray-Tracing Options to Mitigate the Neutral Atmosphere Delay in GPS, Ph.D. Thesis (Univ. New Brunswick, Fredericton 2008)

    Google Scholar 

  45. V. Nafisi, M. Madzak, J. Böhm, A.A. Ardalan, H. Schuh: Ray-traced tropospheric delays in VLBI analysis, Radio Sci. 47(RS2020), 1–17 (2012)

    Google Scholar 

  46. D.S. MacMillan: Atmospheric gradients from very long baseline interferometry observations, Geophys. Res. Lett. 22(9), 1041–1044 (1995)

    CrossRef  Google Scholar 

  47. G. Chen, T.A. Herring: Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, J. Geophys. Res. Solid Earth 102(B9), 20489–20502 (1997)

    CrossRef  Google Scholar 

  48. S. Chapman: The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth, Proc. Phys. Soc. 43, 1047–1055 (1931)

    Google Scholar 

  49. K. Rawer: Wave Propagation in the Ionosphere (Kluwer, Dordrecht 1993)

    CrossRef  Google Scholar 

  50. G.K. Hartmann, R. Leitinger: Range errors due to ionospheric and tropospheric effects for signal frequencies above 100 MHz, Bull. Géodésique 58(2), 109–136 (1984)

    CrossRef  Google Scholar 

  51. S. Bassiri, G.A. Hajj: Higher-order ionospheric effects on the global positioning system observables and means of modeling them, Manuscripta Geodaetica 18(6), 280–289 (1993)

    Google Scholar 

  52. M.M. Hoque, N. Jakowski: Higher-order ionospheric effects in precise GNSS positioning, J. Geodesy 81(4), 280–289 (2006)

    Google Scholar 

  53. M.M. Hoque, N. Jakowsi: Estimate of higher order ionospheric errors in GNSS positioning, Radio Sci. 43(RS5008), 1–15 (2008)

    Google Scholar 

  54. B.W. Parkinson, S.W. Gilbert: NAVSTAR: Global positioning system – Ten years later, Proc. IEEE 71(10), 1177–1186 (1983)

    CrossRef  Google Scholar 

  55. S. Kedar, G. Hajj, B. Wilson, M. Heflin: The effect of the second order GPS ionospheric correction on receiver position, Geophys. Res. Lett. 30(16), 1829 (2003)

    CrossRef  Google Scholar 

  56. M. Hernandez-Pajares, J.M. Jaun, J.M. Sanz, R. Orus: Second order ionospheric term in GPS: Implementation and impact on geodetic estimates, J. Geophys. Res. 112(B08417), 1–16 (2007)

    Google Scholar 

  57. R. Leitinger, E. Putz: Ionospheric refraction errors and observables. In: Atmospheric Effects on the Geodetic Space Measurements, Monograph 12, ed. by F.K. Brunner (School of Surveying, UNSW, Kensington 1988) pp. 81–102

    Google Scholar 

  58. F.K. Brunner, M. Gu: An improved model for the dual frequency ionospheric correction of GPS observations, Manuscripta Geodaetica 16(3), 205–214 (1991)

    Google Scholar 

  59. N. Jakowski, F. Porsch, G. Mayer: Ionosphere-induced-ray-path bending effects in precise satellite positioning systems, Z. Satell. Position. Navig. Kommun. 3(1), 6–13 (1994)

    Google Scholar 

  60. M.M. Hoque, N. Jakowski: Higher order ionospheric propagation effects on GPS radio occultation signals, Adv. Space Res. 460(2), 162–173 (2010)

    CrossRef  Google Scholar 

  61. M.M. Hoque, N. Jakowski: Ionospheric bending correction for GNSS radio occultation signals, Radio Sci. 46(RS0D06), 1–9 (2011)

    Google Scholar 

  62. R.D. Hunsucker: Radio Techniques for Probing the Terrestrial Ionosphere (Springer, Berlin 1991)

    CrossRef  Google Scholar 

  63. L. Barclay (Ed.): Propagation of Radio Waves, 2nd edn. (IET, London 2003)

    Google Scholar 

  64. P.M. Kintner, B.M. Ledvina: The ionosphere, radio navigation, and global navigation satellite systems, Adv. Space Res. 32(5), 788–811 (2005)

    CrossRef  Google Scholar 

  65. M.C. Kelley: The Earth’s Ionosphere – Plasma Physics and Electrodynamics, 2nd edn. (Elsevier, Amsterdam 2009)

    Google Scholar 

  66. L. Alfonsi, G. De Franceschi, V. Romano, A. Bourdillon, M. Le Huy: GPS scintillations and TEC gradients at equatorial latitudes on April 2006, Adv. Space Res. 47(10), 1750–1757 (2011)

    CrossRef  Google Scholar 

  67. A.M. Smith, C.N. Mitchell, R.J. Watson, R.W. Meggs, P.M. Kintner, K. Kauristie, F. Honary: GPS scintillation in the high arctic associated with an auroral arc, Space Weather 6(S03D01), 1–7 (2008)

    Google Scholar 

  68. S. Fukao, T. Yokoyama, T. Tayama, M. Yamamoto, T. Maruyama, S. Saito: Eastward traverse of equatorial plasma plumes observed with the equatorial atmosphere radar in Indonesia, Ann. Geophysicae. 24(5), 1411–1418 (2006)

    CrossRef  Google Scholar 

  69. M. Nishioka, A. Saito, T. Tsugawa: Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks, J. Geophys. Res. 113(A05301), 1–12 (2008)

    Google Scholar 

  70. S. Basu, E. MacKenzie, S. Basu: Ionospheric constraints on VHF/UHF communication links during solar maximum and minimum period, Radio Sci. 23(3), 363–378 (1988)

    CrossRef  Google Scholar 

  71. J.A. Secan, R.M. Bussey, E.J. Fremouw, S. Basu: High-latitude upgrade to the wideband ionospheric scintillation model, Radio Sci. 32(4), 1567–1574 (1997)

    CrossRef  Google Scholar 

  72. Y. Béniguel: Global ionospheric propagation model (GIM): A propagation model for scintillations of transmitted signals, Radio Sci. 32(3), 1–13 (2002)

    Google Scholar 

  73. Y. Béniguel, P. Hamel: A global ionosphere scintillation propagation model for equatorial regions, J. Space Weather Space Clim. 1(A04), 1–8 (2011)

    Google Scholar 

  74. A. Komjathy, L. Sparks, A.J. Mannucci, A. Coster: The ionospheric impact of the October 2003 storm event on WAAS, Proc. ION GNSS 2004, Long Beach (ION, Virginia 2004) pp. 1298–1307

    Google Scholar 

  75. T. Sakai, T. Yoshihara, S. Saito, K. Matsunaga, K. Hoshinoo, T. Walter: Modeling vertical structure of ionosphere for SBAS, Proc. ION GNSS 2009, Savannah (ION, Virginia 2009) pp. 1257–1267

    Google Scholar 

  76. A.J. Mannucci, B. Iijima, L. Sparks, X. Pi, B. Wilson, B.U. Lindqwister: Assessment of global TEC mapping using a three-dimensional electron density model, J. Atmos. Sol. Terr. Phys. 61, 1227–1236 (1999)

    CrossRef  Google Scholar 

  77. M. Hernandez-Pajares, J.M. Juan, J. Sanz, M. Garcia-Fernandez: Towards a more realistic ionospheric mapping function, Proc. XXVIII URSI Gen. Assembly, Delhi (URSI, Ghent 2005) pp. 1–4

    Google Scholar 

  78. M.M. Hoque-Pajares, N. Jakowski: Mitigation of ionospheric mapping function error, Proc. ION GNSS 2013, Nashville (ION, Virginia 2013) pp. 1848–1855

    Google Scholar 

  79. J.A. Klobuchar: Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Trans. Aerosp. Electron. Syst. 23(3), 325–331 (1987)

    CrossRef  Google Scholar 

  80. X. Wu, X. Hu, G. Wang, H. Zhong, C. Tang: Evaluation of COMPASS ionospheric model in GNSS positioning, Adv. Space Res. 51(6), 959–968 (2013)

    CrossRef  Google Scholar 

  81. G. Hochegger, B. Nava, S. Radicella, R. Leitinger: A family of ionospheric models for different uses, Phys. Chem. Earth 25(4), 307–310 (2000), Part C

    Google Scholar 

  82. S.M. Radicella, R. Leitinger: The evolution of the DGR approach to model electron density profiles, Adv. Space Res. 27(1), 35–40 (2001)

    CrossRef  Google Scholar 

  83. B. Nava, P. Coisson, S.M. Radicella: A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol.-Terr. Phys. 70(15), 1856–1862 (2008)

    CrossRef  Google Scholar 

  84. D. Bilitza: International reference ionosphere, Radio Sci. 36(2), 261–275 (2001)

    CrossRef  Google Scholar 

  85. W.B. Jones, R.M. Gallet: The representation of diurnal and geographical variations of ionospheric data by numerical methods, ITU Telecomm. J. 29(5), 129–149 (1962)

    Google Scholar 

  86. K. Rawer: Meteorological and Astronomical Influences on Radio Wave Propagation (Academic, New York 1963) pp. 221–250

    Google Scholar 

  87. European GNSS (Galileo) Open Service: Ionospheric correction algorithm for Galileo single frequency users, Iss. 1.1, Feb. 2015 (EU 2015), doi:10.2873/723786

    Google Scholar 

  88. R. Orus-Perez, R. Prieto-Cerdeira, B. Arbesser-Rastburg: The Galileo single-frequency ionospheric correction and positioning observed near the solar cycle 24 maximum, Proc. 4th Int. Coll. Sci. Fundam. Asp. the Galileo Prog., Prague (ESA, Noordwijk 2013)

    Google Scholar 

  89. N. Jakowski, M.M. Hoque, C. Mayer: A new global TEC model for estimating transionospheric radio wave propagation errors, J. Geodesy 85(12), 965–974 (2011)

    CrossRef  Google Scholar 

  90. N. Jakowski, C. Mayer, M.M. Hoque, V. Wilken: TEC models and their use in ionosphere monitoring, Radio Sci. 46(RS0D18), 1–11 (2011)

    Google Scholar 

  91. N. Jakowski, E. Sardon, S. Schlueter: GPS-based TEC observations in comparison with IRI95 and the European TEC model NTCM2, Adv. Space Res. 22(6), 803–806 (1998)

    CrossRef  Google Scholar 

  92. S. Schaer: Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System, Ph.D. Thesis (Astronomical Institute, Univ. Bern, Berne 1999)

    Google Scholar 

  93. M. Hernández-Pajares, J.M. Juan, J. Sanz, R. Orus, A. Garcia-Rigo, J. Feltens, A. Komjathy, S.C. Schaer, A. Krankowski: The IGS VTEC maps: A reliable source of ionospheric information since 1998, J. Geodesy 83(3/4), 263–275 (2009)

    CrossRef  Google Scholar 

  94. J.M. Dow, R.E. Neilan, C. Rizos: The international GNSS service in a changing landscape of global navigation satellite systems, J. Geodesy 83(3/4), 191–198 (2009)

    CrossRef  Google Scholar 

  95. N. Jakowski, M.M. Hoque: Ionospheric range error correction models, Proc. Int. Conf. Localiz. GNSS (ICL-GNSS), Starnberg (2012) pp. 1–6

    Google Scholar 

  96. E.A. Araujo-Pradere, T.J. Fuller-Rowell, D. Bilitza: Validation of the STORM response in IRI2000, J. Geophys. Res. Space Phys. 108(A3), 1–10 (2003)

    CrossRef  Google Scholar 

  97. D. Bilitza: International Reference Ionosphere (NASA GSFC, Greenbelt) http://iri.gsfc.nasa.gov/

  98. P. Coisson, S.M. Radicella, R. Leitinger, B. Nava: Topside electron density in IRI and NeQuick: Features and limitations, Adv. Space Res. 37(5), 937–942 (2006)

    CrossRef  Google Scholar 

  99. A.Q. Le, C.C.J.M. Tiberius, H. van der Marel, N. Jakowski: Use of global and regional ionosphere maps for single-frequency precise point positioning. In: Observing our Changing Earth, ed. by M.G. Sideris (Springer, Berlin 2008) pp. 759–769

    Google Scholar 

  100. T.P. Yunck: Coping with the atmosphere and ionosphere in precise satellite and ground positioning. In: Environmental Effects on Spacecraft Positioning and Trajectories, ed. by A.V. Jones (AGU, Washington 1992) pp. 1–16

    Google Scholar 

  101. T. Schüler, H. Diessongo, Y. Poku-Gyamfi: Precise ionosphere-free single-frequency GNSS positioning, GPS Solutions 15(2), 139–147 (2011)

    CrossRef  Google Scholar 

  102. O. Montenbruck, T.V. Helleputte, R. Kroes, E. Gill: Reduced dynamic orbit determination using GPS code and carrier measurements, Aerosp. Sci. Technol. 9(3), 261–271 (2005)

    CrossRef  Google Scholar 

  103. T. Schüler, O. Abel Oladipo: Single-frequency GNSS retrieval of vertical total electron content (VTEC) with GPS L1 and Galileo E5 measurements, J. Space Weather Space Clim. 3(A11), 1–8 (2013)

    Google Scholar 

  104. N. Jakowski: Ionospheric GPS radio occultation measurements on board CHAMP, GPS Solutions 9(2), 88–95 (2005)

    CrossRef  Google Scholar 

  105. S. Datta-Barua, T. Walter, J. Blanch, P. Enge: Bounding higher-order ionosphere errors for the dual-frequency GPS user, Radio Sci. 43(RS5010), 1–15 (2008)

    Google Scholar 

  106. M. Hoque, N. Jakowski: Mitigation of higher order ionospheric effects on GNSS users in Europe, GPS Solutions 12(2), 87–97 (2007)

    CrossRef  Google Scholar 

Download references

Acknowledgements

Norbert Jakowski would like to express his gratitude to his colleagues from the German Aerospace Center with whom he has worked over many years. In particular he thanks his colleague Dr. Mohammed Mainul Hoque for close cooperation for more than a decade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hobiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hobiger, T., Jakowski, N. (2017). Atmospheric Signal Propagation. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_6

Download citation