Atmospheric Signal Propagation

  • Thomas Hobiger
  • Norbert Jakowski
Part of the Springer Handbooks book series (SHB)


Global navigation satellite system (GNSS ) satellites emit signals that propagate as electromagnetic waves through space to the receivers which are located on or near the Earth’s surface or on other satellites. Thereby, electromagnetic waves travel through the ionosphere and the neutral atmosphere (troposphere) which causes signals to be delayed, damped, and refracted as the refractivity index of the propagation media is not equal to one. In this chapter, the nature and effects of GNSS signal propagation in both the troposphere and the ionosphere, aref examined. After a brief review of the fundamentals of electromagnetic waves their propagation in refractive media, the effects of the neutral atmosphere are discussed. In addition, empirical correction models as well as the state-of-the-art atmosphere delay estimation approaches are presented. Effects related to signal propagation through the ionosphere are dealt in a dedicated section by describing the error contribution of the first up to third-order terms in the refractive index and ray path bending. After discussing diffraction and scattering phenomena due to ionospheric irregularities, mitigation techniques for different types of applications are presented.


Global Position System Global Navigation Satellite System Global Navigation Satellite System Total Electron Content Vertical Total Electron Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

BeiDou Navigation Satellite System


Comité Consultatif International des Radiocommunications


Center for Orbit Determination in Europe


Deutsches Zentrum für Luft- und Raumfahrt


European Centre for Medium-Range Weather Forecasts


European Geostationary Navigation Overlay Service


equatorial plasma bubble


extreme ultraviolet


Deutsches GeoForschungsZentrum


global navigation satellite system


Global Positioning System


global pressure and temperature (model)


International Earth Rotation and Reference Systems Service


International GNSS Service


in-orbit validation


international reference ionosphere




Niell mapping function


numerical weather model


numerical weather prediction


position dilution of precision


root mean square


Rayleigh-Taylor instability


satellite-based augmentation system


slant total electron content


total electron content


University of New Brunswick


International Union of Radio Science


Vienna mapping function


vertical total electron content


Wide Area Augmentation System


zenith hydrostatic delay


zenith wet delay



Norbert Jakowski would like to express his gratitude to his colleagues from the German Aerospace Center with whom he has worked over many years. In particular he thanks his colleague Dr. Mohammed Mainul Hoque for close cooperation for more than a decade.


  1. 6.1
    D.J. Griffiths: Introduction to Electrodynamics, 4th edn. (Addison-Wesley, Boston 2012)Google Scholar
  2. 6.2
    J.D. Jackson: Classical Electrodynamics, 3rd edn. (John Wiley, New York 1998)Google Scholar
  3. 6.3
    H.J. Liebe: MPM – An atmospheric millimeter-wave propagation model, Int. J. Infrared Millim. Wave 10(6), 631–650 (1989)CrossRefGoogle Scholar
  4. 6.4
    P. Debye: Polar Molecules (Dover, New York 1929)Google Scholar
  5. 6.5
    K.G. Budden: The Propagation of Radio Waves: The Theory of Radio Waves of Low Power in the Ionosphere and Magnetosphere, 1st edn. (Cambridge Univ. Press, Cambridge 1985)CrossRefGoogle Scholar
  6. 6.6
    K. Davies: Ionospheric Radio (Peter Peregrinus, London 1990)CrossRefGoogle Scholar
  7. 6.7
    L. Essen, K.D. Froome: Dielectric constant and refractive index of air and its principal constituents at 24,0000 Mc/s, Nature 167, 512–513 (1951)CrossRefGoogle Scholar
  8. 6.8
    J.C. Owens: Optical refractive index of air: Dependence on pressure, temperature and composition, Appl. Opt. 6(1), 51–59 (1967)CrossRefGoogle Scholar
  9. 6.9
    J.M. Rüeger: Refractive index formula for radio waves, Proc. XXII FIG Int. Congr., Washington (FIG, Copenhagen 2002) pp. 1–13Google Scholar
  10. 6.10
    J. Böhm, H. Schuh: Atmospheric Effects in Space Geodesy (Springer, Berlin 2013)CrossRefGoogle Scholar
  11. 6.11
    J. Saastamoinen: Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. In: The Use of Artificial Satellites for Geodesy, ed. by S.W. Henriksen, A. Mancini, B.H. Chovitz (AGU, Washington 1972) pp. 247–251Google Scholar
  12. 6.12
    H. Berg: Allgemeine Meteorologie (Dümmler, Berlin 1948)Google Scholar
  13. 6.13
    B. Hofmann-Wellenhof, H. Moritz: Physical Geodesy (Springer, Berlin 2006)Google Scholar
  14. 6.14
    H.S. Hopfield: Two-quartic tropospheric refractivity profile for correcting satellite data, J. Geophys. Res. 74(18), 4487–4499 (1969)CrossRefGoogle Scholar
  15. 6.15
    R.F. Leandro, M.C. Santos, R.B. Langley: UNB neutral atmosphere models: Development and performance, Proc. ION NTM 2006, Monterey (ION, Virginia 2006) pp. 564–573Google Scholar
  16. 6.16
    J. Boehm, R. Heinkelmann, H. Schuh: Short note: A global model of pressure and temperature for geodetic applications, J. Geodesy 81(10), 679–683 (2007)CrossRefGoogle Scholar
  17. 6.17
    K. Lagler, M. Schindelegger, J. Boehm, H. Krasna, T. Nilsson: GPT2: Empirical slant delay model for radio space geodetic techniques, Geophys. Res. Lett. 40(6), 1069–1073 (2013)CrossRefGoogle Scholar
  18. 6.18
    G. Petit, B. Luzum: IERS Conventions (2010) (Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt 2010), IERS Technical Note No. 36Google Scholar
  19. 6.19
    United States Committee on Extension to the Standard Atmosphere: US Standard Atmosphere Supplements 1966 (US Govt. Print. Off., Washington 1966) Google Scholar
  20. 6.20
    J.L. Davis, T.A. Herring, I.I. Shapiro, A.E.E. Rogers, G. Elgered: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci. 20, 1593–1607 (1985)CrossRefGoogle Scholar
  21. 6.21
    V.B. Mendes: Modeling the Neutral-Atmosphere Propagation Delay in Radiometric Space Techniques, Ph.D. Thesis (Univ. New Brunswick, Fredericton 1999)Google Scholar
  22. 6.22
    C.C. Chao: A Model for Tropospheric Calibration from Daily Surface and Radiosonde Balloon Measurement, Tech. Mem. 391–350 (Jet Propulsion Laboratory, Pasadena 1972) pp. 67–73Google Scholar
  23. 6.23
    C.C. Chao: New Tropospheric Range Corrections with Seasonal Adjustment, DSN Progr. Rep., JPL Report No. 32–1526, Vol. (Jet Propulsion Laboratory, Pasadena 1971) pp. 67–73Google Scholar
  24. 6.24
    C.C. Chao: A New Method to Predict Wet Zenith Range Refraction from Surface Measurements of Meteorological Parameters, DSN Progr. Rep. No. 32–1526 (Jet Propulsion Laboratory, Pasadena 1973) pp. 33–41Google Scholar
  25. 6.25
    H.S. Hopfield: The effect of tropospheric refraction on the Doppler shift of a satellite signal, J. Geophys. Res. 68(18), 5157–5168 (1961)CrossRefGoogle Scholar
  26. 6.26
    H.S. Hopfield: Tropospheric effect on electromagnetically measured range: Prediction from surface weather data, Radio Sci. 6(3), 357–367 (1972)CrossRefGoogle Scholar
  27. 6.27
    H.S. Hopfield: Tropospheric Effects on Signals at Very Low Elevation Angles (Appl. Phys. Lab., John Hopkins Univ., Laurel 1976), Tech. Memo. TG1291Google Scholar
  28. 6.28
    H.S. Hopfield: Improvements in the tropospheric refraction correction for range measurement, Philos. Trans. R. Soc. Lond. 294(1410), 341–352 (1979)CrossRefGoogle Scholar
  29. 6.29
    J.W. Marini: Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Sci. 7(2), 223–231 (1972)CrossRefGoogle Scholar
  30. 6.30
    T.A. Herring: Modelling atmospheric delay in the analysis of space geodetic data. In: Symposium on Refraction of Transatmospheric Signals in Geodesy, Publications on Geodesy, No. 36, ed. by J.C. de Munck, T.A.T. Spoelstra (Netherlands Geodetic Commission, Delft 1992) pp. 157–164Google Scholar
  31. 6.31
    A.E. Niell: Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res. 101(B2), 3227–3246 (1996)CrossRefGoogle Scholar
  32. 6.32
    L.P. Gradinarsky, J.M. Johansson, G. Elgered, P. Jarlemark: GPS site testing at Chajnantor in Chile, Phys. Chem. Earth 26(6–8), 421–426 (2001)CrossRefGoogle Scholar
  33. 6.33
    C. Rocken, S. Sokolovskiy, J.M. Johnson, D. Hunt: Improved mapping of tropospheric delays, J. Atmos. Ocean. Technol. 18, 1205–1213 (2001)CrossRefGoogle Scholar
  34. 6.34
    A.E. Niell: Improved atmospheric mapping functions for VLBI and GPS, Earth Planets Space 52, 699–702 (2000)CrossRefGoogle Scholar
  35. 6.35
    A.E. Niell: Global mapping functions for the atmosphere delay at radio wavelengths, Phys. Chem. Earth 26(6-8), 475–480 (2001)CrossRefGoogle Scholar
  36. 6.36
    J. Boehm, H. Schuh: Vienna mapping functions in VLBI analyses, Geophys. Res. Lett. 31(L01603), 1–4 (2004)Google Scholar
  37. 6.37
    J. Boehm, B. Werl, H. Schuh: Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data, J. Geophys. Res. 111(B02406), 1–9 (2006)Google Scholar
  38. 6.38
    Vienna University of Technology, GGOS Atmosphere: Atmosphere Delays (Vienna Univ. Technology, Vienna 2014)
  39. 6.39
    L. Urquhart, M. Santos, F. Nievinski, J. Böhm: Generation and assessment of VMF1-type grids using North-American numerical weather models. In: Earth on the Edge: Science for a Sustainable Planet, ed. by C. Rizos, P. Willis (Springer, Berlin 2014) pp. 3–9CrossRefGoogle Scholar
  40. 6.40
    University of New Brunswick Vienna Mapping Function Service (Univ. New-Brunswick, Frederiction)
  41. 6.41
    J. Böhm, A. Niell, P. Tregoning, H. Schuh: Global mapping function (GMF): A new empirical mapping function based on data from numerical weather model data, Geophys. Res. Lett. 33(L07304), 1–4 (2006)Google Scholar
  42. 6.42
    P. Gegout, R. Biancale, L. Soudarin: Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere, J. Geodesy 85(6–8), 661–677 (2011)CrossRefGoogle Scholar
  43. 6.43
    Th. Hobiger, R. Ichikawa, T. Takasu, Y. Koyama, T. Kondo: Ray-traced troposphere slant delays for precise point positioning, Earth Planets Space 60(5), 1–4 (2008)CrossRefGoogle Scholar
  44. 6.44
    F.G. Nievinski: Ray-Tracing Options to Mitigate the Neutral Atmosphere Delay in GPS, Ph.D. Thesis (Univ. New Brunswick, Fredericton 2008)Google Scholar
  45. 6.45
    V. Nafisi, M. Madzak, J. Böhm, A.A. Ardalan, H. Schuh: Ray-traced tropospheric delays in VLBI analysis, Radio Sci. 47(RS2020), 1–17 (2012)Google Scholar
  46. 6.46
    D.S. MacMillan: Atmospheric gradients from very long baseline interferometry observations, Geophys. Res. Lett. 22(9), 1041–1044 (1995)CrossRefGoogle Scholar
  47. 6.47
    G. Chen, T.A. Herring: Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, J. Geophys. Res. Solid Earth 102(B9), 20489–20502 (1997)CrossRefGoogle Scholar
  48. 6.48
    S. Chapman: The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth, Proc. Phys. Soc. 43, 1047–1055 (1931)Google Scholar
  49. 6.49
    K. Rawer: Wave Propagation in the Ionosphere (Kluwer, Dordrecht 1993)CrossRefGoogle Scholar
  50. 6.50
    G.K. Hartmann, R. Leitinger: Range errors due to ionospheric and tropospheric effects for signal frequencies above 100 MHz, Bull. Géodésique 58(2), 109–136 (1984)CrossRefGoogle Scholar
  51. 6.51
    S. Bassiri, G.A. Hajj: Higher-order ionospheric effects on the global positioning system observables and means of modeling them, Manuscripta Geodaetica 18(6), 280–289 (1993)Google Scholar
  52. 6.52
    M.M. Hoque, N. Jakowski: Higher-order ionospheric effects in precise GNSS positioning, J. Geodesy 81(4), 280–289 (2006)Google Scholar
  53. 6.53
    M.M. Hoque, N. Jakowsi: Estimate of higher order ionospheric errors in GNSS positioning, Radio Sci. 43(RS5008), 1–15 (2008)Google Scholar
  54. 6.54
    B.W. Parkinson, S.W. Gilbert: NAVSTAR: Global positioning system – Ten years later, Proc. IEEE 71(10), 1177–1186 (1983)CrossRefGoogle Scholar
  55. 6.55
    S. Kedar, G. Hajj, B. Wilson, M. Heflin: The effect of the second order GPS ionospheric correction on receiver position, Geophys. Res. Lett. 30(16), 1829 (2003)CrossRefGoogle Scholar
  56. 6.56
    M. Hernandez-Pajares, J.M. Jaun, J.M. Sanz, R. Orus: Second order ionospheric term in GPS: Implementation and impact on geodetic estimates, J. Geophys. Res. 112(B08417), 1–16 (2007)Google Scholar
  57. 6.57
    R. Leitinger, E. Putz: Ionospheric refraction errors and observables. In: Atmospheric Effects on the Geodetic Space Measurements, Monograph 12, ed. by F.K. Brunner (School of Surveying, UNSW, Kensington 1988) pp. 81–102Google Scholar
  58. 6.58
    F.K. Brunner, M. Gu: An improved model for the dual frequency ionospheric correction of GPS observations, Manuscripta Geodaetica 16(3), 205–214 (1991)Google Scholar
  59. 6.59
    N. Jakowski, F. Porsch, G. Mayer: Ionosphere-induced-ray-path bending effects in precise satellite positioning systems, Z. Satell. Position. Navig. Kommun. 3(1), 6–13 (1994)Google Scholar
  60. 6.60
    M.M. Hoque, N. Jakowski: Higher order ionospheric propagation effects on GPS radio occultation signals, Adv. Space Res. 460(2), 162–173 (2010)CrossRefGoogle Scholar
  61. 6.61
    M.M. Hoque, N. Jakowski: Ionospheric bending correction for GNSS radio occultation signals, Radio Sci. 46(RS0D06), 1–9 (2011)Google Scholar
  62. 6.62
    R.D. Hunsucker: Radio Techniques for Probing the Terrestrial Ionosphere (Springer, Berlin 1991)CrossRefGoogle Scholar
  63. 6.63
    L. Barclay (Ed.): Propagation of Radio Waves, 2nd edn. (IET, London 2003)Google Scholar
  64. 6.64
    P.M. Kintner, B.M. Ledvina: The ionosphere, radio navigation, and global navigation satellite systems, Adv. Space Res. 32(5), 788–811 (2005)CrossRefGoogle Scholar
  65. 6.65
    M.C. Kelley: The Earth’s Ionosphere – Plasma Physics and Electrodynamics, 2nd edn. (Elsevier, Amsterdam 2009)Google Scholar
  66. 6.66
    L. Alfonsi, G. De Franceschi, V. Romano, A. Bourdillon, M. Le Huy: GPS scintillations and TEC gradients at equatorial latitudes on April 2006, Adv. Space Res. 47(10), 1750–1757 (2011)CrossRefGoogle Scholar
  67. 6.67
    A.M. Smith, C.N. Mitchell, R.J. Watson, R.W. Meggs, P.M. Kintner, K. Kauristie, F. Honary: GPS scintillation in the high arctic associated with an auroral arc, Space Weather 6(S03D01), 1–7 (2008)Google Scholar
  68. 6.68
    S. Fukao, T. Yokoyama, T. Tayama, M. Yamamoto, T. Maruyama, S. Saito: Eastward traverse of equatorial plasma plumes observed with the equatorial atmosphere radar in Indonesia, Ann. Geophysicae. 24(5), 1411–1418 (2006)CrossRefGoogle Scholar
  69. 6.69
    M. Nishioka, A. Saito, T. Tsugawa: Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks, J. Geophys. Res. 113(A05301), 1–12 (2008)Google Scholar
  70. 6.70
    S. Basu, E. MacKenzie, S. Basu: Ionospheric constraints on VHF/UHF communication links during solar maximum and minimum period, Radio Sci. 23(3), 363–378 (1988)CrossRefGoogle Scholar
  71. 6.71
    J.A. Secan, R.M. Bussey, E.J. Fremouw, S. Basu: High-latitude upgrade to the wideband ionospheric scintillation model, Radio Sci. 32(4), 1567–1574 (1997)CrossRefGoogle Scholar
  72. 6.72
    Y. Béniguel: Global ionospheric propagation model (GIM): A propagation model for scintillations of transmitted signals, Radio Sci. 32(3), 1–13 (2002)Google Scholar
  73. 6.73
    Y. Béniguel, P. Hamel: A global ionosphere scintillation propagation model for equatorial regions, J. Space Weather Space Clim. 1(A04), 1–8 (2011)Google Scholar
  74. 6.74
    A. Komjathy, L. Sparks, A.J. Mannucci, A. Coster: The ionospheric impact of the October 2003 storm event on WAAS, Proc. ION GNSS 2004, Long Beach (ION, Virginia 2004) pp. 1298–1307Google Scholar
  75. 6.75
    T. Sakai, T. Yoshihara, S. Saito, K. Matsunaga, K. Hoshinoo, T. Walter: Modeling vertical structure of ionosphere for SBAS, Proc. ION GNSS 2009, Savannah (ION, Virginia 2009) pp. 1257–1267Google Scholar
  76. 6.76
    A.J. Mannucci, B. Iijima, L. Sparks, X. Pi, B. Wilson, B.U. Lindqwister: Assessment of global TEC mapping using a three-dimensional electron density model, J. Atmos. Sol. Terr. Phys. 61, 1227–1236 (1999)CrossRefGoogle Scholar
  77. 6.77
    M. Hernandez-Pajares, J.M. Juan, J. Sanz, M. Garcia-Fernandez: Towards a more realistic ionospheric mapping function, Proc. XXVIII URSI Gen. Assembly, Delhi (URSI, Ghent 2005) pp. 1–4Google Scholar
  78. 6.78
    M.M. Hoque-Pajares, N. Jakowski: Mitigation of ionospheric mapping function error, Proc. ION GNSS 2013, Nashville (ION, Virginia 2013) pp. 1848–1855Google Scholar
  79. 6.79
    J.A. Klobuchar: Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Trans. Aerosp. Electron. Syst. 23(3), 325–331 (1987)CrossRefGoogle Scholar
  80. 6.80
    X. Wu, X. Hu, G. Wang, H. Zhong, C. Tang: Evaluation of COMPASS ionospheric model in GNSS positioning, Adv. Space Res. 51(6), 959–968 (2013)CrossRefGoogle Scholar
  81. 6.81
    G. Hochegger, B. Nava, S. Radicella, R. Leitinger: A family of ionospheric models for different uses, Phys. Chem. Earth 25(4), 307–310 (2000), Part CGoogle Scholar
  82. 6.82
    S.M. Radicella, R. Leitinger: The evolution of the DGR approach to model electron density profiles, Adv. Space Res. 27(1), 35–40 (2001)CrossRefGoogle Scholar
  83. 6.83
    B. Nava, P. Coisson, S.M. Radicella: A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol.-Terr. Phys. 70(15), 1856–1862 (2008)CrossRefGoogle Scholar
  84. 6.84
    D. Bilitza: International reference ionosphere, Radio Sci. 36(2), 261–275 (2001)CrossRefGoogle Scholar
  85. 6.85
    W.B. Jones, R.M. Gallet: The representation of diurnal and geographical variations of ionospheric data by numerical methods, ITU Telecomm. J. 29(5), 129–149 (1962)Google Scholar
  86. 6.86
    K. Rawer: Meteorological and Astronomical Influences on Radio Wave Propagation (Academic, New York 1963) pp. 221–250Google Scholar
  87. 6.87
    European GNSS (Galileo) Open Service: Ionospheric correction algorithm for Galileo single frequency users, Iss. 1.1, Feb. 2015 (EU 2015), doi:10.2873/723786Google Scholar
  88. 6.88
    R. Orus-Perez, R. Prieto-Cerdeira, B. Arbesser-Rastburg: The Galileo single-frequency ionospheric correction and positioning observed near the solar cycle 24 maximum, Proc. 4th Int. Coll. Sci. Fundam. Asp. the Galileo Prog., Prague (ESA, Noordwijk 2013)Google Scholar
  89. 6.89
    N. Jakowski, M.M. Hoque, C. Mayer: A new global TEC model for estimating transionospheric radio wave propagation errors, J. Geodesy 85(12), 965–974 (2011)CrossRefGoogle Scholar
  90. 6.90
    N. Jakowski, C. Mayer, M.M. Hoque, V. Wilken: TEC models and their use in ionosphere monitoring, Radio Sci. 46(RS0D18), 1–11 (2011)Google Scholar
  91. 6.91
    N. Jakowski, E. Sardon, S. Schlueter: GPS-based TEC observations in comparison with IRI95 and the European TEC model NTCM2, Adv. Space Res. 22(6), 803–806 (1998)CrossRefGoogle Scholar
  92. 6.92
    S. Schaer: Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System, Ph.D. Thesis (Astronomical Institute, Univ. Bern, Berne 1999)Google Scholar
  93. 6.93
    M. Hernández-Pajares, J.M. Juan, J. Sanz, R. Orus, A. Garcia-Rigo, J. Feltens, A. Komjathy, S.C. Schaer, A. Krankowski: The IGS VTEC maps: A reliable source of ionospheric information since 1998, J. Geodesy 83(3/4), 263–275 (2009)CrossRefGoogle Scholar
  94. 6.94
    J.M. Dow, R.E. Neilan, C. Rizos: The international GNSS service in a changing landscape of global navigation satellite systems, J. Geodesy 83(3/4), 191–198 (2009)CrossRefGoogle Scholar
  95. 6.95
    N. Jakowski, M.M. Hoque: Ionospheric range error correction models, Proc. Int. Conf. Localiz. GNSS (ICL-GNSS), Starnberg (2012) pp. 1–6Google Scholar
  96. 6.96
    E.A. Araujo-Pradere, T.J. Fuller-Rowell, D. Bilitza: Validation of the STORM response in IRI2000, J. Geophys. Res. Space Phys. 108(A3), 1–10 (2003)CrossRefGoogle Scholar
  97. 6.97
    D. Bilitza: International Reference Ionosphere (NASA GSFC, Greenbelt)
  98. 6.98
    P. Coisson, S.M. Radicella, R. Leitinger, B. Nava: Topside electron density in IRI and NeQuick: Features and limitations, Adv. Space Res. 37(5), 937–942 (2006)CrossRefGoogle Scholar
  99. 6.99
    A.Q. Le, C.C.J.M. Tiberius, H. van der Marel, N. Jakowski: Use of global and regional ionosphere maps for single-frequency precise point positioning. In: Observing our Changing Earth, ed. by M.G. Sideris (Springer, Berlin 2008) pp. 759–769Google Scholar
  100. 6.100
    T.P. Yunck: Coping with the atmosphere and ionosphere in precise satellite and ground positioning. In: Environmental Effects on Spacecraft Positioning and Trajectories, ed. by A.V. Jones (AGU, Washington 1992) pp. 1–16Google Scholar
  101. 6.101
    T. Schüler, H. Diessongo, Y. Poku-Gyamfi: Precise ionosphere-free single-frequency GNSS positioning, GPS Solutions 15(2), 139–147 (2011)CrossRefGoogle Scholar
  102. 6.102
    O. Montenbruck, T.V. Helleputte, R. Kroes, E. Gill: Reduced dynamic orbit determination using GPS code and carrier measurements, Aerosp. Sci. Technol. 9(3), 261–271 (2005)CrossRefGoogle Scholar
  103. 6.103
    T. Schüler, O. Abel Oladipo: Single-frequency GNSS retrieval of vertical total electron content (VTEC) with GPS L1 and Galileo E5 measurements, J. Space Weather Space Clim. 3(A11), 1–8 (2013)Google Scholar
  104. 6.104
    N. Jakowski: Ionospheric GPS radio occultation measurements on board CHAMP, GPS Solutions 9(2), 88–95 (2005)CrossRefGoogle Scholar
  105. 6.105
    S. Datta-Barua, T. Walter, J. Blanch, P. Enge: Bounding higher-order ionosphere errors for the dual-frequency GPS user, Radio Sci. 43(RS5010), 1–15 (2008)Google Scholar
  106. 6.106
    M. Hoque, N. Jakowski: Mitigation of higher order ionospheric effects on GNSS users in Europe, GPS Solutions 12(2), 87–97 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Onsala Space ObservatoryChalmers University of TechnologyOnsalaSweden
  2. 2.Institute of Communications and NavigationGerman Aerospace Center (DLR)NeustrelitzGermany

Personalised recommendations