Advertisement

Signals and Modulation

  • Michael Meurer
  • Felix Antreich
Part of the Springer Handbooks book series (SHB)

Zusammenfassung

Satellite navigation relies on signals radiated by orbiting satellites and received by mobile satellite navigation receivers. This chapter addresses the fundamentals of such navigation signals and introduces the most important underlying concepts. It provides an introduction to radio frequency signals including the basics of electromagnetic waves, their carrier frequency, polarization, as well as group and phase velocity. The application of waves for carrying signals, their power and spectrum are addressed. It is shown how information-carrying signals can be modulated onto the wave using various modulation schemes such as binary phase shift keying, binary offset carrier, and alternating binary offset carrier. Setting out from international agreed allocations, the frequency bands used in GNSS are described. The concept of pseudo-random codes which is typically used for GNSS signals is introduced as well as their receiver side processing following a correlation principle.

AltBOC

alternative BOC

BOC

binary offset carrier

BPSK

binary phase-shift keying

CASM

coherent adaptive sub-carrier modulation

CBOC

composite binary offset carrier

GNSS

global navigation satellite system

GPS

Global Positioning System

ITU

International Telecommunication Union

RMS

root mean square

TMBOC

time multiplexed binary offset carrier

References

  1. 4.1
    J.D. Jackson: Classical Electrodynamics (John Wiley, New York 1998)Google Scholar
  2. 4.2
    J.C. Maxwell: A Treatise on Electricity and Magnetism (Dover, New York 1979), originally (Oxford Univ. Press 1908)Google Scholar
  3. 4.3
    H. Krim, M. Viberg: Two decades of array signal processing research, IEEE Signal Process. Mag. 13(4), 67–94 (1996)CrossRefGoogle Scholar
  4. 4.4
    J. Jeans: The Mathematical Theory of Electricity and Magnetism (Cambridge Univ. Press, Cambridge 1908)Google Scholar
  5. 4.5
    J.A. Stratton: Electromagnetic Theory (McGraw-Hill, New York 1941)Google Scholar
  6. 4.6
    J.C. Maxwell, P.M. Harman: The Scientific Letters and Papers of James Clerk Maxwell: 1874–1879 (Cambridge Univ. Press, Cambridge 2002)Google Scholar
  7. 4.7
    D. Zwillinger: Handbook of Differential Equations (Academic, San Diego 1997)Google Scholar
  8. 4.8
    B. Hofmann-Wellenhof, H. Lichtenegger, E. Wasle: GNSS – Global Navigation Satelllite Systems – GPS, GLONASS, Galileo and more (Springer, Vienna 2008)Google Scholar
  9. 4.9
    S. Stein, J.J. Jones: Modern Communication Principles: With Application to Digital Signaling (McGraw-Hill, New York 1967)Google Scholar
  10. 4.10
    P. Misra, P. Enge: Global Positioning System, Signals, Measurements, and Performance (Ganga-Jamuna, Lincoln 2006)Google Scholar
  11. 4.11
    J.S. Lee, L.E. Miller: CDMA Systems Engineering Handbook (Artech House, Norwood 1998)Google Scholar
  12. 4.12
    A. Papoulis, S.U. Pillai: Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York 2002), 4th edn.Google Scholar
  13. 4.13
    S.W. Golomb, G. Gong: Signal Design for Good Correlation (Cambridge Univ. Press, Cambridge 2005)CrossRefGoogle Scholar
  14. 4.14
    C. Enneking, M. Stein, M. Castaneda, F. Antreich, J.A. Nossek: Multi-satellite time-delay estimation for reliable high-resolution GNSS receivers, Proc. IEEE/ION PLANS 2012, Myrtle Beach (ION, Virginia 2012) pp. 488–494Google Scholar
  15. 4.15
    E.P. Glennon, A.G. Dempster: Delayed PIC for postcorrelation mitigation of continuous wave and multiple access interference in GPS receivers, IEEE Trans. Aerosp. Electron. Syst. 47(4), 2544–2557 (2011)CrossRefGoogle Scholar
  16. 4.16
    L. Welch: Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inf. Theory 20(3), 397–399 (1974)CrossRefGoogle Scholar
  17. 4.17
    R. Gold: Optimal binary sequences for spread spectrum multiplexing, IEEE Trans. Inf. Theory 13(4), 619–621 (1967)CrossRefGoogle Scholar
  18. 4.18
    S.M. Kay: Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall, New Jersey 1993)Google Scholar
  19. 4.19
    R.D. Shelton, A.F. Adkins: Noise bandwidth of common filters, IEEE Trans. Commun. Technol. 6(18), 828–830 (1970)CrossRefGoogle Scholar
  20. 4.20
    D.R. White: The noise bandwidth of sampled data systems, IEEE Trans. Instrum. Meas. 38(6), 1036–1043 (1989)CrossRefGoogle Scholar
  21. 4.21
    A. Mezghani, F. Antreich, J.A. Nossek: Multiple parameter estimation with quantized channel output, Proc. Int. ITG/IEEE Workshop Smart Antennas, Bremen (2010) pp. 143–150Google Scholar
  22. 4.22
    F. Amoroso: The bandwidth of digital data signals, IEEE Commun. Mag. 18(6), 13–24 (1980)CrossRefGoogle Scholar
  23. 4.23
    R.N. Barcewell: The Fourier Transform and its Applications (McGraw-Hill, New York 1986)Google Scholar
  24. 4.24
    F. Antreich: Array Processing and Signal Design for Timing Synchronization, Ph.D. Thesis (Department Electrical Engineering, Munich 2011)Google Scholar
  25. 4.25
    F. Antreich, J.A. Nossek: Optimum chip pulse shape design for timing synchronization, Proc. IEEE Int. Conf. Acoust. Speech Signal Process., ICASSP, Prague (2011) pp. 3524–3527Google Scholar
  26. 4.26
    Report of Working Group A: Compatibility and interoperability, ICG/WGA/DEC2008, 3rd Meet. Int. Comm. Glob. Navig. Satell. Syst. (ICG), Pasadena 2008 (2008)Google Scholar
  27. 4.27
    J.V. Perell Gisbert: Interference assessment using up to date public information of operating and under development RNSS systems, Fourth Eur. Work. GNSS Signals Signal Process. (DLR, Oberpfaffenhofen 2009)Google Scholar
  28. 4.28
    A.J. Viterbi: CDMA: Principles of Spread Spectrum Communication (Addison-Wesley, Reedwood City 1995)Google Scholar
  29. 4.29
    A coordination methodology for RNSS inter-system interference estimation, Recommendation M.1831-1, Sep. 2015 (ITU, Geneva 2015)Google Scholar
  30. 4.30
    M.A. Landolsi, W.E. Stark: DS-CDMA chip waveform design for minimal interference under bandwidth, phase, and envelope constraints, IEEE Trans. Commun. 47(11), 1737–1746 (1999)CrossRefGoogle Scholar
  31. 4.31
    T. Luo, S. Pasupathy, E.S. Sousa: Interference control and chip waveform design in multirate DS-CDMA communication systems, IEEE Trans. Wirel. Commun. 1(1), 56–66 (2002)CrossRefGoogle Scholar
  32. 4.32
    M.A. Landolsi: Performance limits in DS-CDMA timing acquisition, IEEE Trans. Wirel. Commun. 6(9), 3248–3255 (2007)CrossRefGoogle Scholar
  33. 4.33
    European GNSS (Galileo) Open Service Signal In Space Interface Control Document, OS SIS ICD, Iss. 1.2, Nov. 2015 (EU 2015)Google Scholar
  34. 4.34
    M.S. Braasch: Multipath effects. In: Global Positioning System: Theory and Applications, Vol. 1, ed. by B.W. Parkinson, J.J. Spilker Jr. (AIAA, Washington 1996), pp 547–568, Chap. 14,Google Scholar
  35. 4.35
    M.S. Braasch, A.J. van Dierendonck: GPS receiver architecture and measurements, Proc. IEEE 87(1), 48–64 (1999)CrossRefGoogle Scholar
  36. 4.36
    M. Vergara, F. Antreich, G. Artaud, M. Meurer, J.-L. Issler: On performance bounds for GNSS receivers, Proc. ION GNSS 2009, Savannah (ION, Virginia 2009) p. 1974Google Scholar
  37. 4.37
    M. Vergara, F. Antreich, M. Meurer: Effect of multipath on code-tracking error jitter of a delay locked loop, Proc. 4th Eur. Workshop GNSS Signals Signal Process., Oberpfaffenhofen (2009)Google Scholar
  38. 4.38
    A.J. van Dierendonck, A.J. Fenton: Theory and performance of narrow correlator spacing in a GPS receiver, Navigation 39(3), 265–284 (1992)CrossRefGoogle Scholar
  39. 4.39
    A. Papoulis: The Fourier Integral and its Applications (McGraw-Hill, New York 1962)Google Scholar
  40. 4.40
    J.W. Betz: Binary offset carrier modulations for radionavigation, Navigation 48(4), 227–246 (2002)CrossRefGoogle Scholar
  41. 4.41
    E. Rebeyrol: Galileo Signals and Payload Optimization, Ph.D. Thesis (l’Ecole Superieure des Telecommunications de Paris, Paris 2007)Google Scholar
  42. 4.42
    Navstar GPS Space Segment/User Segment L1C Interfaces, Interface Specification IS-GPS-800D, 24 Sep. 2013 (Global Positioning Systems Directorate, Los Angels 2013)Google Scholar
  43. 4.43
    Navstar GPS Space Segment/Navigation User Segment Interfaces, Interface Specification IS-GPS-200H, 24 Sep. 2013 (Global Positioning Systems Directorate, Los Angeles 2013)Google Scholar
  44. 4.44
    Navstar GPS Space Segment/User Segment L5 Interfaces, Interface Specification IS GPS-705D, 24 Sep. 2013 (Global Positioning Systems Directorate, Los Angeles 2013)Google Scholar
  45. 4.45
    M.K. Simon, S.M. Hinedi, W.C. Lindsey: Digital Communication Techniques, Signal Design and Detection (Prentice-Hall, New Jersey 1995)Google Scholar
  46. 4.46
    J.A. Avila-Rodriguez: On Generalized Signal Waveforms for Satellite Navigation, Ph.D. Thesis (Department of Aerospace Engineering, University FAF, Munich 2008)Google Scholar
  47. 4.47
    J.-A. Avila-Rodriguez, S. Wallner, G. Hein, E. Rebeyrol, O. Julien, Ch. Macabiau, L. Ries, A. Delatour, L. Lestarquit, J.-L. Issler: CBOC: An implementation of MBOC, Proc. 1st CNES-ESA Workshop GALILEO Signals Signal Process., Toulouse (2006), hal-01021795Google Scholar
  48. 4.48
    S. Butman, U. Timor: Interplex – An efficient multichannel PSK/PM telemetry system, IEEE Trans. Commun. 20(8), 415–419 (1972)CrossRefGoogle Scholar
  49. 4.49
    U. Timor: Equivalence of time-multiplexed and frequency-multiplexed signals in digital communications, IEEE Trans. Commun. 20(8), 435–438 (1972)CrossRefGoogle Scholar
  50. 4.50
    P.A. Dafesh, S. Lazar, T. Nguyen: Coherent Adaptive Subcarrier Modulation (CASM) for GPS modernization, Proc. ION NTM 1999, San Diego (ION, Virginia 1999) pp. 649–660Google Scholar
  51. 4.51
    G.H. Wang, V.S. Lin, T. Fan, K.P. Maine, P.A. Dafesh: Study of signal combining methodologies for GPS III’s flexible navigation payload, Proc. ION GNSS 2004, Long Beach (ION, Virginia 2004) pp. 2207–2218Google Scholar
  52. 4.52
    T. Fan, V.S. Lin, G.H. Wang, P.A. Dafesh: Study of signal combining methodologies for future GPS flexible navigation payload (Part II), Proc. IEEE/ION PLANS 2008, Monterey (2008) pp. 1079–1108, doi:10.1109/PLANS.2008.4570115Google Scholar
  53. 4.53
    J.J. Spilker Jr., R.S. Orr: Code multiplexing via majority logic for GPS modernization, Proc. ION GPS 1998, Nashville (ION, Virginia 1998) pp. 265–273Google Scholar
  54. 4.54
    M. Vergara, F. Antreich: Staggered Interplex, Proc. IEEE/ION PLANS, Myrtle Beach 2012 (ION, Virginia 2012) pp. 913–918Google Scholar
  55. 4.55
    M. Vergara, F. Antreich: Evolution of interplex scheme with variable signal constellation, Proc. ION ITM 2013, San Diego (ION, Virginia 2013) pp. 651–770Google Scholar
  56. 4.56
    G. Albertazzi, M. Chiani, G.E. Corazza, A. Duverdier, H. Ernst, W. Gappmair, G. Liva, S. Papaharalabos: Forward error correction. In: Digital Satellite Communications, ed. by G. Corazza (Springer, New York 2007) pp. 117–174, Chap. 4CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Communications and NavigationGerman Aerospace Center (DLR)WesslingGermany
  2. 2.Dept. of Teleinformatics EngineeringFederal University of Ceará (UFC)FortalezaBrazil

Personalised recommendations