Skip to main content

Geodynamics

  • Chapter

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

Geodynamic studies rely on measurement of motions over time, such as displacements, displacement time series, or velocities for those sites that move steadily with time. Global navigation satellite systems (GlossaryTerm

GNSS

s) are widely used for geodynamics research, including studies of tectonic plate motions and plate boundary deformation, earthquakes and seismology, volcano deformation, surface loading deformation, and glacial isostatic adjustment. GNSS is an ideal tool for these studies because it can provide time series of millimeter-precision positions using inexpensive, portable and easily deployed equipment. This chapter illustrates and summarizes the important concepts and the basic computational models used to relate active processes within the Earth to surface deformation that can be observed using GNSS. These include conceptual models for the earthquake cycle, elastic dislocation theory, the Mogi volcanic source model, and surface loading computations. The chapter also summarizes important research results in all of these topics. Rapid and real-time applications of GNSS to use surface deformation for earthquake and tsunami warning are growing, and are likely to become even more important in the future, as will multi-GNSS observations to provide greater measurement accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CDMA:

code division multiple access

ECMWF:

European Centre for Medium-Range Weather Forecasts

GLONASS:

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GNSS:

global navigation satellite system

GPS:

Global Positioning System

IGS:

International GNSS Service

InSAR:

interferometric synthetic aperture radar

ITRF:

International Terrestrial Reference Frame

JPL:

Jet Propulsion Laboratory

MLE:

maximum likelihood estimation

NASA:

National Aeronautics and Space Administration

PBO:

plate boundary observatory

PLL:

phase lock loop

PPP:

precise point positioning

RMS:

root mean square

SLR:

satellite laser ranging

SNR:

signal-to-noise ratio

TRF:

terrestrial reference frame

UNAVCO:

University NAVSTAR Consortium

USGS:

United States Geological Survey

VLBI:

very long baseline interferometry

References

  1. M. Bonafede, J. Strehlau, A.R. Ritsema: Geophysical and structural aspects of fault mechanics – A brief historical review, Terra Nova 4(4), 458–463 (1992)

    Article  Google Scholar 

  2. H.F. Reid: Permanent displacements of the ground. In: The California Earthquake of April 18, 1906, Vol. II, ed. by S.E.I. Commission (Carnegie Inst. Wash., Washington DC 1910) pp. 16–28

    Google Scholar 

  3. H.F. Reid: The elastic-rebound theory of earthquakes, Bull. Dept. Geol. 6(9), 413–444 (1911)

    Google Scholar 

  4. G.K. Gilbert: A theory of the earthquakes of the Great basin, with a practical application, Am. J. Sci. 27(157), 49–53 (1884)

    Article  Google Scholar 

  5. Z. Altamimi, X. Collilieux, J. Legrand, B. Garayt, C. Boucher: ITRF2005: A new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters, J. Geophys. Res. 112(B004949), 1–19 (2007)

    Google Scholar 

  6. P. Segall: Earthquake and Volcano Deformation (Princeton Univ. Press, Princeton 2010)

    Book  Google Scholar 

  7. E.M. Hill, J.L. Davis, P. Elósegui, B.P. Wernicke, E. Malikowski, N.A. Niemi: Characterization of site-specific GPS errors using a short-baseline network of braced monuments at Yucca mountain, southern Nevada, J. Geophys. Res. Solid Earth 114(B11402), 1–13 (2009)

    Google Scholar 

  8. R.A. Bennett, S. Hreinsdóttir, M.S. Velasco, N.P. Fay: GPS constraints on vertical crustal motion in the northern basin and range, Geophys. Res.Lett. 34(L22319), 1–5 (2007)

    Google Scholar 

  9. M.S. Bos, R.M.S. Fernandes, S.D.P. Williams, L. Bastos: Fast error analysis of continuous GNSS observations with missing data, J. Geod. 87(4), 351–360 (2013)

    Article  Google Scholar 

  10. M. Hackl, R. Malservisi, U. Hugentobler, R. Wonnacott: Estimation of velocity uncertainties from GPS time series: Examples from the analysis of the South African TrigNet network, J. Geophys. Res. Solid Earth 116(B11404), 1–12 (2011)

    Google Scholar 

  11. A. Santamaría-Gómez, M.-N. Bouin, X. Collilieux, G. Wöppelmann: Correlated errors in GPS position time series: Implications for velocity estimates, J. Geophys. Res. Solid Earth 116(B01405), 1–14 (2011)

    Google Scholar 

  12. D. Dong, T. Yunck, M. Heflin: Origin of the international terrestrial reference frame, J. Geophys. Res. Solid Earth 108(B4), ETG 8.1–8.10 (2003), doi:10.1029/2002JB002035

    Article  Google Scholar 

  13. D.F. Argus, R.G. Gordon, M.B. Heflin, C. Ma, R.J. Eanes, P. Willis, W.R. Peltier, S.E. Owen: The angular velocities of the plates and the velocity of Earth’s centre from space geodesy, Geophys. J. Int. 180(3), 913–960 (2010)

    Article  Google Scholar 

  14. D.F. Argus: Uncertainty in the velocity between the mass center and surface of Earth, J. Geophys. Res. Solid Earth 117(B10), 1–15 (2012)

    Article  Google Scholar 

  15. X. Wu, X. Collilieux, Z. Altamimi, B.L.A. Vermeersen, R.S. Gross, I. Fukumori: Accuracy of the international terrestrial reference frame origin and earth expansion, Geophys. Res. Lett. 38(L13304), 1–5 (2011)

    Google Scholar 

  16. J. Ray, Z. Altamimi, X. Collilieux, T. van Dam: Anomalous harmonics in the spectra of GPS position estimates, GPS Solutions 12(1), 55–64 (2008)

    Article  Google Scholar 

  17. X. Collilieux, L. Métivier, Z. Altamimi, T. van Dam, J. Ray: Quality assessment of GPS reprocessed terrestrial reference frame, GPS Solutions 15(3), 219–231 (2011)

    Article  Google Scholar 

  18. C.J. Rodriguez-Solano, U. Hugentobler, P. Steigenberger, M. Bloßfeld, M. Fritsche: Reducing the draconitic errors in GNSS geodetic products, J. Geod. 88(6), 559–574 (2014)

    Article  Google Scholar 

  19. J. Griffiths, J.R. Ray: Sub-daily alias and draconitic errors in the IGS orbits, GPS Solutions 17(3), 413–422 (2013)

    Article  Google Scholar 

  20. M.A. King, C.S. Watson: Long GPS coordinate time series: Multipath and geometry effects, J. Geophys. Res. Solid Earth 115(B04403), 1–23 (2010)

    Google Scholar 

  21. A.R. Amiri-Simkooei: On the nature of GPS draconitic year periodic pattern in multivariate position time series, J. Geophys. Res. Solid Earth 118(15), 2500–2511 (2013)

    Article  Google Scholar 

  22. R. Zou, J.T. Freymueller, K. Ding, S. Yang, Q. Wang: Evaluating seasonal loading models and their impact on global and regional reference frame alignment, J. Geophys. Res. Solid Earth 119(2), 1337–1358 (2014)

    Article  Google Scholar 

  23. B.A.C. Ambrosius, G. Beutler, G. Blewitt, R.E. Neilan: The role of GPS in the WEGENER project, J. Geodyn. 25(3), 213–240 (1998)

    Article  Google Scholar 

  24. C. Bruyninx: The EUREF permanent network: A multi-disciplinary network serving surveyors as well as scientists, GeoInformatics 7(5), 32–35 (2004)

    Google Scholar 

  25. M. Heflin, W. Bertiger, G. Blewitt, A. Freedman, K. Hurst, S. Lichten, U. Lindqwister, Y. Vigue, F. Webb, T. Yunck, J. Zumberge: Global geodesy using GPS without fiducial sites, Geophys. Res. Lett. 19(2), 131–134 (1992)

    Article  Google Scholar 

  26. G. Beutler, I.I. Mueller, R.E. Neilan: The international GPS service for geodynamics (IGS): The story. In: GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications, ed. by G. Beutler, G. Hein, W.G. Melbourne, G. Seeber (Springer, Berlin 1996) pp. 3–13

    Chapter  Google Scholar 

  27. S. Hreinsdóttir, J.T. Freymueller, R. Bürgmann, J. Mitchell: Coseismic deformation of the 2002 Denali fault earthquake: Insights from GPS measurements, J. Geophys. Res. Solid Earth 111(B03308), 1–18 (2006)

    Google Scholar 

  28. Q. Wang, X. Qiao, Q. Lan, J. Freymueller, S. Yang, C. Xu, Y. Yang, X. You, K. Tan, G. Chen: Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan, Nat. Geosci. 4(9), 634–640 (2011)

    Article  Google Scholar 

  29. H. Tsuji, M.O. Murakami: Japanese regional GPS tracking network for geodesy and geodynamics. In: Permanent Satellite Tracking Networks for Geodesy and Geodynamics, ed. by G.L. Mader (Springer, Vienna 1993) pp. 161–166

    Chapter  Google Scholar 

  30. J.M. Johansson, J.L. Davis, H.-G. Scherneck, G.A. Milne, M. Vermeer, J.X. Mitrovica, B. Bennett, R.A. Jonsson, G. Elgered, P. Elósegui, H. Koivula, M. Poutanen, B.O. Rönnäng, I.I. Shapiro: Continuous GPS measurements of postglacial adjustment in Fennoscandia: 1. Geodetic results, J. Geophys. Res. Solid Earth 107(B8), 3.1–3.28 (2002)

    Article  Google Scholar 

  31. M. Lidberg, J.M. Johansson, H.-G. Scherneck, G.A. Milne: Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST, J. Geodyn. 50(1), 8–18 (2010)

    Article  Google Scholar 

  32. Z. Shen, D.D. Jackson, Y. Feng, M. Cline, M. Kim, P. Fang, Y. Bock: Postseismic deformation following the Landers earthquake, California, 28 June 1992, Bull. Seismol. Soc. Am. 84(3), 780–791 (1994)

    Google Scholar 

  33. A.M. Freed, R. Bürgmann: Evidence of power-law flow in the Mojave desert mantle, Nature 430(6999), 548–551 (2004)

    Article  Google Scholar 

  34. K.W. Hudnut, Y. Bock, M. Cline, P. Fang, Y. Feng, J. Freymueller, X. Ge, W.K. Gross, D. Jackson, M. Kim, N.E. King, J. Langbein, S.C. Larsen, M. Lisowski, Z.-K. Shen, J. Svarc, J. Zhang: Co-seismic displacements of the 1992 Landers earthquake sequence, Bull. Seismol. Soc. Am. 84(3), 625–645 (1994)

    Google Scholar 

  35. J. Freymueller, N.E. King, P. Segall: The co-seismic slip distribution of the Landers earthquake, Bull. Seismol. Soc. Am. 84(3), 646–659 (1994)

    Google Scholar 

  36. K.W. Hudnut, Y. Bock, J.E. Galetzka, F.H. Webb, W.H. Young: The southern California integrated GPS network (SCIGN), Proc. 10th FIG Int. Symp. Deform. Meas., Orange (FIG, Copenhagen 2001) pp. 19–22

    Google Scholar 

  37. T. Sagiya: A decade of GEONET: 1994-2003-The continuous GPS observation in Japan and its impact on earthquake studies, Earth Planets Space 56(8), xxix–xlii (2004)

    Article  Google Scholar 

  38. G.F. Sella, T.H. Dixon, A. Mao: REVEL: A model for recent plate velocities from space geodesy, J. Geophys. Res. Solid Earth 107(B4), ETG 11.1–11.31 (2002)

    Article  Google Scholar 

  39. R. McCaffrey, A.I. Qamar, R.W. King, R. Wells, G. Khazaradze, C.A. Williams, C.W. Stevens, J.J. Vollick, P.C. Zwick: Fault locking, block rotation and crustal deformation in the Pacific northwest, Geophys. J. Int. 169(3), 1315–1340 (2007)

    Article  Google Scholar 

  40. J.T. Freymueller: GPS, tectonic geodesy. In: Encyclopedia of Solid Earth Geophysics, ed. by H.K. Gupta (Springer, Berlin 2011) pp. 431–449

    Chapter  Google Scholar 

  41. G.F. Sella, S. Stein, T.H. Dixon, M. Craymer, T.S. James, S. Mazzotti, R.K. Dokka: Observation of glacial isostatic adjustment in stable North America with GPS, Geophys. Res. Lett. 34(L02306), 1–6 (2007)

    Google Scholar 

  42. E. Calais, J.Y. Han, C. DeMets, J.M. Nocquet: Deformation of the North American plate interior from a decade of continuous GPS measurements, J. Geophys. Res. Solid Earth 111(B06402), 1–13 (2006)

    Google Scholar 

  43. K.M. Larson, J.T. Freymueller, S. Philipsen: Global plate velocities from the global positioning system, J. Geophys. Res. Solid Earth 102(B5), 9961–9981 (1997)

    Article  Google Scholar 

  44. E.O. Norabuena, T.H. Dixon, S. Stein, C.G.A. Harrison: Decelerating Nazca-South America and Nazca-Pacific plate motions, Geophys. Res. Lett. 26(22), 3405–3408 (1999)

    Article  Google Scholar 

  45. W. Thatcher: How the continents deform: The evidence from tectonic geodesy, Annu. Rev. Earth Planet. Sci. 37, 237–262 (2009)

    Article  Google Scholar 

  46. W. Gan, P. Zhang, Z.-K. Shen, Z. Niu, M. Wang, Y. Wan, D. Zhou, J. Cheng: Present-day crustal motion within the Tibetan plateau inferred from GPS measurements, J. Geophys. Res. Solid Earth 112(B08416), 1–14 (2007)

    Google Scholar 

  47. C.H. Scholz: The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, Cambridge 2002)

    Book  Google Scholar 

  48. J.C. Savage, R.O. Burford: Accumulation of tectonic strain in California, Bull. Seismol. Soc. Am. 60(6), 1877–1896 (1970)

    Google Scholar 

  49. J.C. Savage: A dislocation model of strain accumulation and release at a subduction zone, J. Geophys. Res. Solid Earth 88(B6), 4984–4996 (1983)

    Article  Google Scholar 

  50. W. Thatcher: Strain accumulation on the northern San Andreas fault zone since 1906, J. Geophys. Res. 80(35), 4873–4880 (1975)

    Article  Google Scholar 

  51. W. Thatcher, J.B. Rundle: A viscoelastic coupling model for the cyclic deformation due to periodically repeated Earthquakes at subduction zones, J. Geophys. Res. Solid Earth 89(B9), 7631–7640 (1984)

    Article  Google Scholar 

  52. J.T. Freymueller: Active tectonics of plate boundary zones and the continuity of plate boundary deformation from Asia to North America, Curr. Sci. 99(12), 1719–1732 (2010)

    Google Scholar 

  53. A.J. Haines, W.E. Holt: A procedure to obtain the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data, J. Geophys. Res. 98(B7), 12057–12082 (1993)

    Article  Google Scholar 

  54. T. Candela, F. Renard, Y. Klinger, K. Mair, J. Schmittbuhl, E.E. Brodsky: Roughness of fault surfaces over nine decades of length scales, J. Geophys. Res. Solid Earth 117(B08409), 1–30 (2012)

    Google Scholar 

  55. Y. Okada: Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am. 75(4), 1135–1154 (1985)

    Google Scholar 

  56. R. McCaffrey: Crustal block rotations and plate coupling. In: Plate Boundary Zones, AGU Geodynamics Series 30, ed. by S. Stein, J. Freymueller (AGU, Washington DC 2002) pp. 101–122

    Google Scholar 

  57. B.J. Meade, B.H. Hager: Block models of crustal motion in southern California constrained by GPS measurements, J. Geophys. Res. Solid Earth 110(B03403), 1–19 (2005)

    Google Scholar 

  58. J.L. Elliott, C.F. Larsen, J.T. Freymueller, R.J. Motyka: Tectonic block motion and glacial isostatic adjustment in southeast Alaska and adjacent Canada constrained by GPS measurements, J. Geophys. Res. Solid Earth 115(B09407), 1–21 (2010)

    Google Scholar 

  59. J. Elliott, J.T. Freymueller, C.F. Larsen: Active tectonics of the St. Elias orogen, Alaska, observed with GPS measurements, J. Geophys. Res. Solid Earth 118(10), 5625–5642 (2013)

    Article  Google Scholar 

  60. M.A. Langstaff, B.J. Meade: Edge-driven mechanical microplate models of strike-slip faulting in the Tibetan plateau, J. Geophys. Res. Solid Earth 118(7), 3809–3819 (2013)

    Article  Google Scholar 

  61. J.P. Loveless, B.J. Meade: Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan, J. Geophys. Res. Solid Earth 115(B02410), 1–35 (2010)

    Google Scholar 

  62. Q. Chen, J.T. Freymueller, Q. Wang, Z. Yang, C. Xu, J. Liu: A deforming block model for the present-day tectonics of Tibet, J. Geophys. Res. Solid Earth 109(B01403), 1–16 (2004)

    Google Scholar 

  63. E. Parkin: Horizontal crustal movements. In: The Great Alaska Earthquake of 1964 – Seismology and Geodesy, ed. by Cot.A. Earthquake (Natl. Acad. Sci., Washington DC 1972) pp. 419–434

    Google Scholar 

  64. S.C. Cohen, J.T. Freymueller: Crustal deformation in the southcentral Alaska subduction zone, Adv. Geophys. 47, 1–63 (2004)

    Article  Google Scholar 

  65. M. Sato, T. Ishikawa, N. Ujihara, S. Yoshida, M. Fujita, M. Mochizuki, A. Asada: Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake, Science 332(6036), 1395 (2011)

    Article  Google Scholar 

  66. T. Lay, C.J. Ammon, H.O. Kanamori, L. Xue, M. Kim: Possible large near-trench slip during the 2011 M (w) 9.0 off the Pacific coast of Tohoku Earthquake, Earth, Planets Space 63(7), 687–692 (2011)

    Article  Google Scholar 

  67. R. Wang, F. Lorenzo-Martín, F. Roth: PSGRN–PSCMP – A new code for calculating co-and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory, Comput. Geosci. 32(4), 527–541 (2006)

    Article  Google Scholar 

  68. F.F. Pollitz: Coseismic deformation from earthquake faulting on a layered spherical Earth, Geophys. J. Int. 125(1), 1–14 (1996)

    Article  Google Scholar 

  69. W. Menke: Geophysical Data Analysis: Discrete Inverse Theory (Elsevier Academic, Amsterdam 2012)

    Google Scholar 

  70. R.C. Aster, B. Borchers, C.H. Thurber: Parameter Estimation and Inverse Problems (Elsevier Academic, Amsterdam 2012)

    Google Scholar 

  71. P.B. Stark, R.L. Parker: Bounded-variable least-squares: An algorithm and applications, Comput. Stat. 10, 129 (1995)

    Google Scholar 

  72. M.V. Matthews, P. Segall: Estimation of depth-dependent fault slip from measured surface deformation with application to the 1906 San Francisco earthquake, J. Geophys. Res. Solid Earth 98(B7), 12153–12163 (1993)

    Article  Google Scholar 

  73. P. Banerjee, F.F. Pollitz, R. Bürgmann: The size and duration of the Sumatra-Andaman earthquake from far-field static offsets, Science 308(5729), 1769–1772 (2005)

    Article  Google Scholar 

  74. W. Wang, W. Sun, Y. Wu, G. Gu: Modification of fault slip models of the \(M_{\mathrm{w}}\) 9.0 Tohoku Earthquake by far field GPS observations, J. Geodyn. 75, 22–33 (2014)

    Article  Google Scholar 

  75. P. Tregoning, R. Burgette, S.C. McClusky, S. Lejeune, C.S. Watson, H. McQueen: A decade of horizontal deformation from great earthquakes, J. Geophys. Res. Solid Earth 118(5), 2371–2381 (2013)

    Article  Google Scholar 

  76. R.M. Nikolaidis, Y. Bock, P.J. Jonge, P. Shearer, D.C. Agnew, M. van Domselaar: Seismic wave observations with the global positioning system, J. Geophys. Res. Solid Earth 106(B10), 21897–21916 (2001)

    Article  Google Scholar 

  77. K.M. Larson, P. Bodin, J. Gomberg: Using 1 Hz GPS data to measure deformations caused by the Denali fault earthquake, Science 300(5624), 1421–1424 (2003)

    Article  Google Scholar 

  78. A. Avallone, M. Marzario, A. Cirella, A. Piatanesi, A. Rovelli, C. di Alessandro, E. D’Anastasio, N. D’Agostino, R. Giuliani, M. Mattone: Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: The case of the Mw 6.3 L’Aquila (central Italy) event, J. Geophys. Res. Solid Earth 116(B02305), 1–14 (2011)

    Google Scholar 

  79. Y. Zheng, J. Li, Z. Xie, M.H. Ritzwoller: 5 Hz GPS seismology of the El Mayor-Cucapah earthquake: Estimating the earthquake focal mechanism, Geophys. J. Int. 190(3), 1723–1732 (2012)

    Article  Google Scholar 

  80. H. Yue, T. Lay, J.T. Freymueller, K. Ding, L. Rivera, N.A. Ruppert, K.D. Koper: Supershear rupture of the 5 January 2013 Craig, Alaska (Mw 7.5) earthquake, J. Geophys. Res. Solid Earth 118(11), 5903–5919 (2013)

    Article  Google Scholar 

  81. J.F. Genrich, Y. Bock: Instantaneous geodetic positioning with 10–50 Hz GPS measurements: Noise characteristics and implications for monitoring networks, J. Geophys. Res. Solid Earth 111(B03403), 1–16 (2006)

    Google Scholar 

  82. S. Miyazaki, P. Segall, J. Fukuda, T. Kato: Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: Implications for variations in fault zone frictional properties, Geophys. Res. Lett. 31(L06623), 1–4 (2004)

    Google Scholar 

  83. B.W. Crowell, Y. Bock, D. Melgar: Real-time inversion of GPS data for finite fault modeling and rapid hazard assessment, Geophys. Res. Lett. 39(L09305), 1–6 (2012)

    Google Scholar 

  84. P. Elósegui, J.L. Davis, D. Oberlander, R. Baena, G. Ekström: Accuracy of high-rate GPS for seismology, Geophys. Res. Lett. 33(L11308), 1–4 (2006)

    Google Scholar 

  85. F. Moschas, S. Stiros: PLL bandwidth and noise in 100 Hz GPS measurements, GPS Solutions 19(2), 173–185 (2014)

    Article  Google Scholar 

  86. R. Tu, R. Wang, M. Ge, T.R. Walter, M. Ramatschi, C. Milkereit, D. Bindi, T. Dahm: Cost-effective monitoring of ground motion related to earthquakes, landslides, or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer, Geophys. Res. Lett. 40(15), 3825–3829 (2013)

    Article  Google Scholar 

  87. H. Yue, T. Lay, K.D. Koper: En echelon and orthogonal fault ruptures of the 11 April 2012 great intraplate earthquakes, Nature 490(7419), 245–249 (2012)

    Article  Google Scholar 

  88. B.W. Crowell, Y. Bock, M.B. Squibb: Demonstration of earthquake early warning using total displacement waveforms from real-time GPS networks, Seismol. Res. Lett. 80(5), 772–782 (2009)

    Article  Google Scholar 

  89. S.E. Owen, F. Webb, M. Simons, P.A. Rosen, J. Cruz, S. Yun, E.J. Fielding, A.W. Moore, H. Hua, P.S. Agram: The ARIA-EQ project: Advanced rapid imaging and analysis for earthquakes, Proc. AGU Fall Meet., San Francisco (AGU, Washington DC 2011) p. 1298

    Google Scholar 

  90. X. Li, G. Dick, M. Ge, S. Heise, J. Wickert, M. Bender: Real-time GPS sensing of atmospheric water vapor: Precise point positioning with orbit, clock, and phase delay corrections, Geophys. Res. Lett. 41(10), 3615–3621 (2014)

    Article  Google Scholar 

  91. X. Li, M. Ge, X. Zhang, Y. Zhang, B. Guo, R. Wang, J. Klotz, J. Wickert: Real-time high-rate co-seismic displacement from ambiguity-fixed precise point positioning: Application to earthquake early warning, Geophys. Res. Lett. 40(2), 295–300 (2013)

    Article  Google Scholar 

  92. Y. Ohta, T. Kobayashi, H. Tsushima, S. Miura, R. Hino, T. Takasu, H. Fujimoto, T. Iinuma, K. Tachibana, T. Demachi, T. Sato, M. Ohzono, N. Um: Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: Application to the 2011 Tohoku-Oki earthquake (Mw 9.0), J. Geophys. Res. Solid Earth 117(B02311), 1–16 (2012)

    Google Scholar 

  93. D. Melgar, Y. Bock, B.W. Crowell: Real-time centroid moment tensor determination for large earthquakes from local and regional displacement records, Geophys. J. Int. 188(2), 703–718 (2012)

    Article  Google Scholar 

  94. S.E. Minson, J.R. Murray, J.O. Langbein, J.S. Gomberg: Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data, J. Geophys. Res. Solid Earth 119(4), 3201–3231 (2014)

    Article  Google Scholar 

  95. R. Fang, C. Shi, W. Song, G. Wang, J. Liu: Determination of earthquake magnitude using GPS displacement waveforms from real-time precise point positioning, Geophys. J. Int. 196(1), 461–472 (2014)

    Article  Google Scholar 

  96. B. Gutenberg: Amplitudes of surface waves and magnitudes of shallow earthquakes, Bull. Seismol. Soc. Am. 35(1), 3–12 (1945)

    Google Scholar 

  97. B.W. Crowell, D. Melgar, Y. Bock, J.S. Haase, J. Geng: Earthquake magnitude scaling using seismogeodetic data, Geophys. Res. Lett. 40(23), 6089–6094 (2013)

    Article  Google Scholar 

  98. G. Rogers, H. Dragert: Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip, Science 300(5627), 1942–1943 (2003)

    Article  Google Scholar 

  99. S.Y. Schwartz, J.M. Rokosky: Slow slip events and seismic tremor at circum-Pacific subduction zones, Rev. Geophys. 45(RG3004), 1–32 (2007)

    Google Scholar 

  100. S. Ide, G.C. Beroza, D.R. Shelly, T. Uchide: A scaling law for slow earthquakes, Nature 447(7140), 76–79 (2007)

    Article  Google Scholar 

  101. R. Bürgmann, P. Segall, M. Lisowski, J. Svarc: Postseismic strain following the 1989 Loma Prieta earthquake from GPS and leveling measurements, J. Geophys. Res. Solid Earth 102(B3), 4933–4955 (1997)

    Article  Google Scholar 

  102. J.J. Lienkaemper, J.S. Galehouse, R.W. Simpson: Creep response of the Hayward fault to stress changes caused by the Loma Prieta earthquake, Science 276(5321), 2014–2016 (1997)

    Article  Google Scholar 

  103. R. Bürgmann, G. Dresen: Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations, Annu. Rev. Earth Planet. Sci. 36(1), 531–567 (2008)

    Article  Google Scholar 

  104. M. Moreno, D. Melnick, M. Rosenau, J. Baez, J. Klotz, O. Oncken, A. Tassara, J. Chen, K. Bataille, M. Bevis, A. Socquet, J. Bolte, C. Vigny, B. Brooks, I. Ryder, V. Grund, B. Smalley, D. Carrizo, M. Bartsch, H. Hase: Toward understanding tectonic control on the \(M_{W}8.8\) 2010 Maule Chile earthquake, Earth Planet. Sci. Lett. 321, 152–165 (2012)

    Article  Google Scholar 

  105. Y.N. Lin, A. Sladen, F. Ortega-Culaciati, M. Simons, J.-P. Avouac, E.J. Fielding, B.A. Brooks, M. Bevis, J. Genrich, A. Rietbrock, C. Vigny, R. Smalley, A. Scocquet: Coseismic and postseismic slip associated with the 2010 Maule earthquake, Chile: Characterizing the Arauco peninsula barrier effect, J. Geophys. Res. Solid Earth 118(6), 3142–3159 (2013)

    Article  Google Scholar 

  106. C. Marone, C.B. Raleigh, C.H. Scholz: Frictional behavior and constitutive modeling of simulated fault gouge, J. Geophys. Res. Solid Earth 95(B5), 7007–7025 (1990)

    Article  Google Scholar 

  107. Y.-J. Hsu, M. Simons, J.-P. Avouac, J. Galetzka, K. Sieh, M. Chlieh, D. Natawidjaja, L. Prawirodirdjo, Y. Bock: Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra, Science 312(5782), 1921–1926 (2006)

    Article  Google Scholar 

  108. I.A. Johanson, E.J. Fielding, F. Rolandone, R. Bürgmann: Coseismic and postseismic slip of the 2004 Parkfield earthquake from space-geodetic data, Bull. Seismol. Soc. Am. 96(4B), S269–S282 (2006)

    Article  Google Scholar 

  109. C. Kreemer, G. Blewitt, F. Maerten: Co-and postseismic deformation of the 28 March 2005 Nias Mw 8.7 earthquake from continuous GPS data, Geophys. Res. Lett. 33(L07307), 1–4 (2006)

    Google Scholar 

  110. S. Ozawa, T. Nishimura, H. Munekane, H. Suito, T. Kobayashi, M. Tobita, T. Imakiire: Preceding, coseismic and postseismic slips of the 2011 Tohoku earthquake, Japan, J. Geophys. Res. Solid Earth 117(B07404), 1–20 (2012)

    Google Scholar 

  111. K.M. Johnson, J. Fukuda, P. Segall: Challenging the rate-state asperity model: Afterslip following the 2011 M9 Tohoku-oki, Japan, earthquake, Geophys. Res. Lett. 39(L20302), 1–5 (2012)

    Google Scholar 

  112. K. Wang, Y. Hu, J. He: Deformation cycles of subduction earthquakes in a viscoelastic Earth, Nature 484(7394), 327–332 (2012)

    Article  Google Scholar 

  113. M. Bevis, A. Brown: Trajectory models and reference frames for crustal motion geodesy, J. Geod. 88(3), 283–311 (2014)

    Article  Google Scholar 

  114. A.M. Freed, R. Bürgmann, E. Calais, J. Freymueller, S. Hreinsdóttir: Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology, J. Geophys. Res. Solid Earth 111(B01401), 1–23 (2006)

    Google Scholar 

  115. K. Mogi: Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them, Bull. Earthq. Res. Inst. Univ. Tokyo 36, 99–134 (1958)

    Google Scholar 

  116. R. Murakami, S. Ozawa, T. Nishimura, T. Tada: A model of magma movements associated with the 2000 eruption of Usu volcano inferred by crustal deformation detected by continuous GPS and other geodetic measurements, J. Geospatial Inf. Auth. 95, 99–105 (2001)

    Google Scholar 

  117. P. Jousset, H. Mori, H. Okada: Elastic models for the magma intrusion associated with the 2000 eruption of Usu Volcano, Hokkaido, Japan, J. Volcanol. Geotherm. Res. 125(1), 81–106 (2003)

    Article  Google Scholar 

  118. J.J. Dvorak, D. Dzurisin: Variations in magma supply rate at Kilauea volcano, Hawaii, J. Geophys. Res. Solid Earth 98(B12), 22255–22268 (1993)

    Article  Google Scholar 

  119. J.J. Dvorak, D. Dzurisin: Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents, Rev. Geophys. 35(3), 343–384 (1997)

    Article  Google Scholar 

  120. T. Fournier, J. Freymueller, P. Cervelli: Tracking magma volume recovery at Okmok volcano using GPS and an unscented Kalman filter, J. Geophys. Res. Solid Earth 114(B02405), 1–18 (2009)

    Google Scholar 

  121. J.F. Larsen, C.J. Nye, M.L. Coombs, M. Tilman, P. Izbekov, C. Cameron: Petrology and geochemistry of the 2006 eruption of Augustine Volcano. In: The 2006 Eruption of Augustine Volcano, Alaska. US Geological Survey, Professional Paper 1769, ed. by J.A. Power, M.L. Coombs, J.T. Freymueller (US Geological Survey, Washington DC 2006) pp. 335–382

    Google Scholar 

  122. A. Burgisser, G.W. Bergantz: A rapid mechanism to remobilize and homogenize highly crystalline magma bodies, Nature 471(7337), 212–215 (2011)

    Article  Google Scholar 

  123. K.M. Larson, M. Poland, A. Miklius: Volcano monitoring using GPS: Developing data analysis strategies based on the June 2007 Kīlauea Volcano intrusion and eruption, J. Geophys. Res. Solid Earth 115(B07406), 1–10 (2010)

    Google Scholar 

  124. K.M. Larson: A new way to detect volcanic plumes, Geophys. Res. Lett. 40(11), 2657–2660 (2013)

    Article  Google Scholar 

  125. R. Grapenthin, J.T. Freymueller, A.M. Kaufman: Geodetic observations during the 2009 eruption of Redoubt Volcano, Alaska, J. Volcanol. Geotherm. Res. 259, 115–132 (2013)

    Article  Google Scholar 

  126. N.T. Penna, M.P. Stewart: Aliased tidal signatures in continuous GPS height time series, Geophys. Res. Lett. 30(23), SDE 1.1–1.4 (2003)

    Article  Google Scholar 

  127. N.T. Penna, M.A. King, M.P. Stewart: GPS height time series: Short-period origins of spurious long-period signals, J. Geophys. Res. Solid Earth 112(B02402), 1–19 (2007)

    Google Scholar 

  128. J. Kusche, E.J.O. Schrama: Surface mass redistribution inversion from global GPS deformation and gravity recovery and climate experiment (GRACE) gravity data, J. Geophys. Res. Solid Earth 110(B09409), 1–14 (2005)

    Google Scholar 

  129. R.J. Blakely: Potential Theory in Gravity and Magnetic Applications (Cambridge Univ. Press, Cambridge 1996)

    Google Scholar 

  130. T. van Dam, J. Wahr, D. Lavallée: A comparison of annual vertical crustal displacements from GPS and gravity recovery and climate experiment (GRACE) over Europe, J. Geophys. Res. Solid Earth 112(B03404), 1–11 (2007)

    Google Scholar 

  131. W.E. Farrell: Deformation of the Earth by surface loads, Rev. Geophys. 10(3), 761–797 (1972)

    Article  Google Scholar 

  132. Y. Fu, D.F. Argus, J.T. Freymueller, M.B. Heflin: Horizontal motion in elastic response to seasonal loading of rain water in the Amazon basin and monsoon water in southeast Asia observed by GPS and inferred from GRACE, Geophys. Res. Lett. 40(23), 6048–6053 (2013)

    Article  Google Scholar 

  133. G. Spada: The Theory Behind TABOO (Samizdat, White River Junction 2003)

    Google Scholar 

  134. G. Spada, V.R. Barletta, V. Klemann, R.E.M. Riva, Z. Martinec, P. Gasperini, B. Lund, D. Wolf, L.L.A. Vermeersen, M.A. King: A benchmark study for glacial isostatic adjustment codes, Geophys. J. Int. 185(1), 106–132 (2011)

    Article  Google Scholar 

  135. X. Collilieux, Z. Altamimi, D. Coulot, T. van Dam, J. Ray: Impact of loading effects on determination of the international terrestrial reference frame, Adv. Space Res. 45(1), 144–154 (2010)

    Article  Google Scholar 

  136. X. Collilieux, T. van Dam, J. Ray, D. Coulot, L. Métivier, Z. Altamimi: Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters, J. Geod. 86(1), 1–14 (2012)

    Article  Google Scholar 

  137. K. Heki: Seasonal modulation of interseismic strain buildup in northeastern Japan driven by snow loads, Science 293(5527), 89–92 (2001)

    Article  Google Scholar 

  138. K. Heki: Snow load and seasonal variation of earthquake occurrence in Japan, Earth Planet. Sci. Lett. 207(1), 159–164 (2003)

    Article  Google Scholar 

  139. D. Dong, P. Fang, Y. Bock, M.K. Cheng, S. Miyazaki: Anatomy of apparent seasonal variations from GPS-derived site position time series, J. Geophys. Res. Solid Earth 107(B4), ETG 9-1–ETG 9-16 (2002), doi:10.1029/2001JB000573

    Article  Google Scholar 

  140. G. Blewitt, D. Lavallée, P. Clarke, K. Nurutdinov: A new global mode of Earth deformation: Seasonal cycle detected, Science 294(5550), 2342–2345 (2001)

    Article  Google Scholar 

  141. P. Tregoning, C. Watson, G. Ramillien, H. McQueen, J. Zhang: Detecting hydrologic deformation using GRACE and GPS, Geophys. Res. Lett. 36(L15401), 1–6 (2009)

    Google Scholar 

  142. S. Nahmani, O. Bock, M. Bouin, A. Santamaría-Gómez, J.-P. Boy, X. Collilieux, L. Metivier, I. Panet, P. Genthon, C. Linage, G. Woeppelmann: Hydrological deformation induced by the west African monsoon: Comparison of GPS, GRACE and loading models, J. Geophys. Res. Solid Earth 117(B05409), 1–16 (2012)

    Google Scholar 

  143. Y. Fu, J.T. Freymueller: Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements, J. Geophys. Res. Solid Earth 117(B03407), 1–14 (2012)

    Google Scholar 

  144. Y. Fu, J.T. Freymueller, T. Jensen: Seasonal hydrological loading in southern Alaska observed by GPS and GRACE, Geophys. Res. Lett. 39(L15310), 1–5 (2012)

    Google Scholar 

  145. J.L. Davis, P. Elósegui, J.X. Mitrovica, M.E. Tamisiea: Climate-driven deformation of the solid Earth from GRACE and GPS, Geophys. Res. Lett. 31(L24605), 1–4 (2004)

    Google Scholar 

  146. M.S. Steckler, S.L. Nooner, S.H. Akhter, S.K. Chowdhury, S. Bettadpur, L. Seeber, M.G. Kogan: Modeling Earth deformation from monsoonal flooding in Bangladesh using hydrographic, GPS, and gravity recovery and climate experiment (GRACE) data, J. Geophys. Res. Solid Earth 115(B08407), 1–18 (2010)

    Google Scholar 

  147. M. Bevis, J. Wahr, S.A. Khan, F.B. Madsen, A. Brown, M. Willis, E. Kendrick, P. Knudsen, J.E. Box, T. van Dam, D.J. Caccamise II, B. Johns, T. Nylen, R. Abbott, S. White, J. Miner, R. Forsberg, H. Zhou, J. Wang, T. Wilson, D. Bromwich, O. Francis: Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change, Proc. Natl. Acad. Sci. 109(30), 11944–11948 (2012)

    Article  Google Scholar 

  148. T. van Dam: 3-dimensional surface displacements derived from the GRACE dealising products (2012) http://geophy.uni.lu/ggfc-combination.html

  149. D. Stammer, C. Wunsch, R. Giering, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, C.N. Hill, J. Marshall: Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model, J. Geophys. Res. Oceans 107(C9), 1.1–1.27 (2002)

    Article  Google Scholar 

  150. T.M. van Dam, J.M. Wahr: Displacements of the Earth’s surface due to atmospheric loading: Effects on gravity and baseline measurements, J. Geophys. Res. Solid Earth 92(B2), 1281–1286 (1987)

    Article  Google Scholar 

  151. M. Rodell, P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, D. Toll: The global land data assimilation system, Bull. Am. Meteorol. Soc. 85(3), 381–394 (2004)

    Article  Google Scholar 

  152. M.M. Rienecker, M.J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M.G. Bosilovich, S.D. Schubert, L. Takacs, G.K. Kim, S. Bloom, J. Chen, D. Collins, A. Conaty, A. da Silva, W. Gu, J. Joiner, R.D. Koster, R. Lucchesi, A. Molod, T. Owens, S. Pawson, P. Pegion, C.R. Redder, R. Reichle, F.R. Robertson, A.G. Ruddick, M. Sienkiewicz, J. Wollen: MERRA: NASA’s modern-era retrospective analysis for research and applications, J. Clim. 24(14), 3624–3648 (2011)

    Article  Google Scholar 

  153. Z. Li, T. van Dam, X. Collilieux, Z. Altamimi, J. Ray, P. Rebischung, S. Nahmani: Quality evaluation of the weekly vertical loading effects induced from continental water storage models. In: IAG 150 Years. Vol. 143 of International Association of Geodesy Symposia, ed. by C. Rizos, P. Willis (Springer, Heidelberg 2016) pp. 673–679

    Google Scholar 

  154. W.R. Peltier: Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004)

    Article  Google Scholar 

  155. M.A. Toscano, W.R. Peltier, R. Drummond: ICE-5G and ICE-6G models of postglacial relative sea-level history applied to the Holocene coral reef record of northeastern St. Croix, US V.I.: Investigating the influence of rotational feedback on GIA processes at tropical latitudes, Quaternary Sci. Rev. 30(21), 3032–3042 (2011)

    Article  Google Scholar 

  156. G.A. Milne, J.X. Mitrovica, H.-G. Scherneck, J.L. Davis, J.M. Johansson, H. Koivula, M. Vermeer: Continuous GPS measurements of postglacial adjustment in Fennoscandia: 2. Modeling results, J. Geophys. Res. Solid Earth 109(B2), ETG 3.1–3.28 (2004)

    Article  Google Scholar 

  157. M. Lidberg, J.M. Johansson, H.-G. Scherneck, J.L. Davis: An improved and extended GPS-derived 3-D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia, J. Geod. 81(3), 213–230 (2007)

    Article  Google Scholar 

  158. A.M. Tushingham, W.R. Peltier: Ice-3G: A new global model of Late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change, J. Geophys. Res. Solid Earth 96(B3), 4497–4523 (1991)

    Article  Google Scholar 

  159. M.B. Dyurgerov, M.F. Meier: Glaciers and the Changing Earth System: A 2004 Snapshot (Institute of Arctic and Alpine Research, Univ. Colorado, Boulder 2005)

    Google Scholar 

  160. C.F. Larsen, R.J. Motyka, A.A. Arendt, K.A. Echelmeyer, P.E. Geissler: Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise, J. Geophys. Res. Earth Surface 112(F01007), 1–11 (2007)

    Google Scholar 

  161. P. Lemke, J. Ren, R.B. Alley, I. Allison, J. Carrasco, G. Flato, Y. Fujii, G. Kaser, P.W. Mote, R.H. Thomas, T. Zhang: Observations: Changes in snow, ice and frozen ground. In: Climate Change 2007: The Physical Science Basis, ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Cambridge Univ. Press, Cambridge 2007) pp. 337–383

    Google Scholar 

  162. E. Berthier, E. Schiefer, G.K.C. Clarke, B. Menounos, F. Rémy: Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery, Nat. Geosci. 3(2), 92–95 (2010)

    Article  Google Scholar 

  163. C.F. Larsen, R.J. Motyka, J.T. Freymueller, K.A. Echelmeyer, E.R. Ivins: Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat, Earth Planet. Sci. Lett. 237(3), 548–560 (2005)

    Article  Google Scholar 

  164. W.R. Peltier, R. Drummond: Rheological stratification of the lithosphere: A direct inference based upon the geodetically observed pattern of the glacial isostatic adjustment of the North American continent, Geophys. Res. Lett. 35(L16314), 1–5 (2008)

    Google Scholar 

  165. D.F. Argus, W.R. Peltier, R. Drummond, A.W. Moore: The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories, Geophys. J. Int. 198(1), 537–563 (2014)

    Article  Google Scholar 

  166. K. Latychev, J.X. Mitrovica, M.E. Tamisiea, J. Tromp, R. Moucha: Influence of lithospheric thickness variations on 3-D crustal velocities due to glacial isostatic adjustment, Geophys. Res. Lett. 32(L01304), 1–4 (2005)

    Google Scholar 

  167. M.J. Willis, A.K. Melkonian, M.E. Pritchard, A. Rivera: Ice loss from the southern Patagonian ice field, South America, between 2000 and 2012, Geophys. Res. Lett. 39(L17501), 1–6 (2012)

    Google Scholar 

  168. POLENET – The Polar Earth Observation Network, http://polenet.org/

  169. R. Dietrich, E.R. Ivins, G. Casassa, H. Lange, J. Wendt, M. Fritsche: Rapid crustal uplift in Patagonia due to enhanced ice loss, Earth Planet. Sci. Lett. 289(1), 22–29 (2010)

    Article  Google Scholar 

  170. E.R. Ivins, T.S. James: Simple models for late Holocene and present-day Patagonian glacier fluctuations and predictions of a geodetically detectable isostatic response, Geophys. J. Int. 138(3), 601–624 (1999)

    Article  Google Scholar 

  171. E.R. Ivins, T.S. James: Bedrock response to Llanquihue Holocene and present-day glaciation in southernmost South America, Geophys. Res. Lett. 131(L24613), 1–4 (2004)

    Google Scholar 

  172. S.A. Khan, K.H. Kjær, M. Bevis, J.L. Bamber, J. Wahr, K.K. Kjeldsen, A.A. Bjørk, N.J. Korsgaard, L.A. Stearns, M.R. van den Broeke, L. Liu, N.K. Larsen, I.S. Muresan: Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming, Nat. Clim. Change 4(4), 292–299 (2014)

    Article  Google Scholar 

  173. Y. Jiang, T.H. Dixon, S. Wdowinski: Accelerating uplift in the North Atlantic region as an indicator of ice loss, Nat. Geosci. 3(6), 404–407 (2010)

    Article  Google Scholar 

  174. R. Dietrich, A. Rülke, J. Ihde, K. Lindner, H. Miller, W. Niemeier, H.-W. Schenke, G. Seeber: Plate kinematics and deformation status of the Antarctic peninsula based on GPS, Glob. Planet. Change 42(1), 313–321 (2004)

    Article  Google Scholar 

  175. I.D. Thomas, M.A. King, M.J. Bentley, P.L. Whitehouse, N.T. Penna, S.D.P. Williams, R.E.M. Riva, D.A. Lavallee, P.J. Clarke, E.C. King, R.C.A. Hindmarsh, H. Koivula: Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations, Geophys. Res. Lett. 38(L22302), 1–6 (2011)

    Google Scholar 

  176. E. Rignot, G. Casassa, P. Gogineni, W. Krabill, A. Rivera, R. Thomas: Accelerated ice discharge from the Antarctic peninsula following the collapse of Larsen B ice shelf, Geophys. Res. Lett. 31(L18401), 1–4 (2004)

    Google Scholar 

  177. T.A. Scambos, J.A. Bohlander, C.A. Shuman, P. Skvarca: Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica, Geophys. Res. Lett. 31(L18402), 1–4 (2004)

    Google Scholar 

  178. G.A. Nield, V.R. Barletta, A. Bordoni, M.A. King, P.L. Whitehouse, P.J. Clarke, E. Domack, T.A. Scambos, E. Berthier: Rapid bedrock uplift in the Antarctic peninsula explained by viscoelastic response to recent ice unloading, Earth Planet. Sci. Lett. 397, 32–41 (2014)

    Article  Google Scholar 

  179. P.L. Whitehouse, M.J. Bentley, A.M. Le Brocq: A deglacial model for Antarctica: Geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment, Quaternary Sci. Rev. 32, 1–24 (2012)

    Article  Google Scholar 

  180. P.L. Whitehouse, M.J. Bentley, G.A. Milne, M.A. King, I.D. Thomas: A new glacial isostatic adjustment model for Antarctica: Calibrated and tested using observations of relative sea-level change and present-day uplift rates, Geophys. J. Int. 190(3), 1464–1482 (2012)

    Article  Google Scholar 

  181. E.R. Ivins, T.S. James, J. Wahr, O. Schrama, J. Ernst, F.W. Landerer, K.M. Simon: Antarctic contribution to sea level rise observed by GRACE with improved GIA correction, J. Geophys. Res. Solid Earth 118(6), 3126–3141 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Kimberly deGrandpre and Shanshan Li for providing comments on an early draft from a student’s perspective. Many figures in this chapter were created using the Generic Mapping Tools (GMT) developed and maintained by Paul Wessel, Walter H. F. Smith, Remko Scharroo, Joaquim Luis, and Florian Wobbe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Freymueller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freymueller, J. (2017). Geodynamics. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_37

Download citation

Publish with us

Policies and ethics