Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

The Global Positioning System (GlossaryTerm

GPS

) became available as a civilian geodetic survey technology in the early 1980s. It has since revolutionized not only geodesy, but surveying operations as well. Global Navigation Systems (GlossaryTerm

GNSS

s) are today a fundamental tool for the land, engineering, and hydrographic surveyor. The majority of GNSS survey tasks relate to the determination of high-accuracy coordinates in a well-defined reference frame, typically using differential GNSS positioning techniques based on the analysis of carrier-phase measurements. Carrier-phase-based positioning is capable of distinct levels of accuracy – submeter, few decimeters, centimeter, and even subcentimeter – through a combination of special instrumentation, sophisticated software, and unique field operations. The evolution of GNSS from a geodetic surveying technology to a versatile surveying tool has seen precise positioning implemented in real-time, using ever shorter spans of measurements, and even when the user receiver is in motion. Furthermore, new techniques based on precise single-point positioning, as well as wide-area reference receiver networks, are starting to find wider use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CORS:

continuously operating reference station

GIS:

geographic information system

GNSS:

global navigation satellite system

GPS:

Global Positioning System

IERS:

International Earth Rotation and Reference Systems Service

IGS:

International GNSS Service

ITRF:

International Terrestrial Reference Frame

PPP:

precise point positioning

RINEX:

receiver independent exchange (format)

RTCM:

Radio Technical Commission for Maritime Services

RTK:

real-time kinematic

RTS:

real-time service

SP3:

Standard Product 3 (format)

UHF:

ultra-high frequency

UNAVCO:

University NAVSTAR Consortium

VHF:

very high frequency

References

  1. C. Rizos: Making sense of the GNSS techniques. In: Manual of Geospatial Science and Technology, 2nd edn., ed. by J. Bossler, J.B. Campbell, R. McMaster, C. Rizos (Taylor Francis, London 2010) pp. 173–190

    Chapter  Google Scholar 

  2. C. Rizos, D. Grejner-Brzezinska: GPS positioning models for single point and baseline solutions. In: Manual of Geospatial Science and Technology, 2nd edn., ed. by J. Bossler, J.B. Campbell, R. McMaster, C. Rizos (Taylor Francis, London 2010) pp. 135–149

    Chapter  Google Scholar 

  3. A. Leick, L. Rapoport, D. Tatarnikov: GPS Satellite Surveying, 4th edn. (Wiley, Hoboken 2015)

    Google Scholar 

  4. B. Hoffmann-Wellenhof, H. Lichtenegger, E. Wasle: GNSS – Global Navigation Satellite Systems (Springer, Wien, New York 2008)

    Google Scholar 

  5. RINEX – The Receiver Independent Exchange Format – Version 3.02 3 Apr. 2013 (IGS RINEX WG and RTCM-SC104, 2013)

    Google Scholar 

  6. NGS: National Geodetic Survey’s (NGS) OPUS web processing site. http://www.ngs.noaa.gov/OPUS/

  7. Natural Resources Canada (NRCAN): Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP) web processing site http://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale=en

  8. Geoscience Australia: AUSPOS online GPS processing service. http://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos/

  9. U. Vollath, H. Landau, X. Chen, K. Doucet, C. Pagels: Network RTK versus single base RTK – Understanding the error characteristics, Proc. ION GPS 2002, Portland (ION, Virginia 2002) pp. 2774–2781

    Google Scholar 

  10. RTCM Standard 10403.2 Differential GNSS Services, Version 3 with Ammendment 2, 7 Nov. 2013 (RTCM, Arlington 2013)

    Google Scholar 

  11. G. Wübbena, A. Bagge, G. Seeber, V. Boder, P. Hankemeier: Dependent errors for real-time precise DGPS applications by establishing stations networks, Proc. ION GPS 1996, Kansas City (ION, Virginia 1996) pp. 1845–1852

    Google Scholar 

  12. L. Wanninger: Real-time differential GPS error modelling in regional reference station networks. In: Advances in Positioning and Reference Frames, International Association of Geodesy Symposia, Vol. 118, ed. by F.K. Brunner (Springer, Berlin 1998) pp. 86–92

    Chapter  Google Scholar 

  13. L. Dai, S. Han, J. Wang, C. Rizos: A study on GPS/GLONASS multiple reference station techniques for precise real-time carrier phase-based positioning, Proc. ION GPS 2001, Salt Lake City (ION, Virginia 2001) pp. 392–403

    Google Scholar 

  14. G. Fotopoulos, M.E. Cannon: An overview of multi-reference station methods for cm-level positioning, GPS Solutions 4(3), 1–10 (2001)

    Article  Google Scholar 

  15. H. Landau, U. Vollath, X. Chen: Virtual reference station systems, J. Glob. Position. Syst. 1(2), 137–143 (2002)

    Article  Google Scholar 

  16. C. Rizos: Network RTK research and implementation: A geodetic perspective, J. Glob. Position. Syst. 1(2), 144–150 (2002)

    Article  Google Scholar 

  17. S. Hilla: Extending the standard product 3 (SP3) orbit format, Proc. Int. GPS Serv. Netw. Data Anal. Center Workshop, Ottawa (IGS, Pasadena 2002)

    Google Scholar 

  18. Z. Altamimi, X. Collilieux, L. Métivier: ITRF2008: An improved solution of the international terrestrial reference frame, J. Geod. 85(8), 457–473 (2011)

    Article  Google Scholar 

  19. J.F. Zumberge, M.B. Heflin, D.C. Jefferson, M.M. Watkins, F.H. Webb: Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res. 102(B3), 5005–5017 (1997)

    Article  Google Scholar 

  20. P. Héroux, Y. Gao, J. Kouba, F. Lahaye, Y. Mireault, P. Collins, K. Macleod, P. Tetreault, K. Chen: Products and applications for precise point positioning – Moving towards real-time, Proc. ION GPS 2004, Long Beach (ION, Virginia 2004) pp. 1832–1843

    Google Scholar 

  21. R.J.P. van Bree, C. Tiberius: Real-time single-frequency precise point positioning: Accuracy assessment, GPS Solutions 16(2), 259–266 (2012)

    Article  Google Scholar 

  22. C. Tiberius, R. van Bree, P. Buist: Staying in lane – Real-time single-frequency PPP on the road, Inside GNSS 6(6), 48–53 (2011)

    Google Scholar 

  23. H. van der Marel, P. de Bakker: Single versus dual-frequency precise point positioning, Inside GNSS 7(4), 30–35 (2012)

    Google Scholar 

  24. H.J. Euler, C.R. Keenan, B.E. Zebhauser, G. Wübbena: Study of a simplified approach in utilizing information from permanent reference station arrays, Proc. ION GPS 2001, Salt Lake City (ION, Virginia 2001) pp. 379–391

    Google Scholar 

  25. B.E. Zebhauser, H.J. Euler, C.R. Keenan, G. Wübbena: A novel approach for the use of information from reference station networks conforming to RTCM V2.3 and future V3.0, Proc. ION NTM 2002, San Diego (ION, Virginia 2002) pp. 863–876

    Google Scholar 

  26. F. Takac, O. Zelzer: The relationship between network RTK solutions MAC, VRS, PRS, FKP and i-MAX, Proc ION GPS 2008, Savannah (ION, Virginia 2008) pp. 348–355

    Google Scholar 

  27. J. Kouba, P. Heroux: Precise point positioning using IGS orbit and clock products, GPS Solutions 5(2), 12–28 (2001)

    Article  Google Scholar 

  28. S. Bisnath, Y. Gao: Current state of precise point positioning and future prospects and limitations. In: Observing Our Changing Earth, International Association of Geodesy Symposia, Vol. 133, ed. by M. Sideris (Springer, Berlin, Heidelberg 2009) pp. 615–623

    Chapter  Google Scholar 

  29. S. Bisnath, P. Collins: Recent developments in precise point positioning, Geomatica 66(2), 103–111 (2012)

    Article  Google Scholar 

  30. M. Caissy, L. Agrotis, G. Weber, M. Hernandez-Pajares, U. Hugentobler: Coming soon – The international GNSS real-time service, GPS World 23(6), 52 (2012)

    Google Scholar 

  31. International GNSS Service (IGS) Real-Time Service (RTS) web site. http://igs.org/rts

  32. O. Øvstedal: Absolute positioning with single-frequency GPS receivers, GPS Solutions 5(4), 33–44 (2002)

    Article  Google Scholar 

  33. Y. Gao, Y. Zhang, K. Chen: Development of a real-time single-frequency precise point positioning system and test results, Proc. ION GNSS 2006, Fort Worth (ION, Virginia 2006) pp. 2297–2303

    Google Scholar 

  34. A.Q. Le, C. Tiberius: Single-frequency precise point positioning with optimal filtering, GPS Solutions 11(1), 61–69 (2007)

    Article  Google Scholar 

  35. G. Wübbena, M. Schmitz, A. Bagg: PPP-RTK: Precise point positioning using state-space representation in RTK networks, Proc. ION GNSS 2005, Long Beach (ION, Virginia 2005) pp. 2584–2594

    Google Scholar 

  36. L. Mervart, Z. Lukes, C. Rocken, T. Iwabuchi: Precise point positioning with ambiguity resolution in real-time, Proc. ION GNSS 2008, Savannah (ION, Virginia 2008) pp. 397–405

    Google Scholar 

  37. M. Ge, G. Gendt, M. Rothacher, C. Shi, J. Liu: Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations, J. Geod. 82(7), 389–399 (2008)

    Article  Google Scholar 

  38. S. Loyer, F. Perosanz, F. Mercier, H. Capdeville, J.-C. Marty: Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center, J. Geod. 86(11), 991–1003 (2012)

    Article  Google Scholar 

  39. P.J.G. Teunissen, A. Khodabandeh: Review and principles of PPP-RTK methods, J. Geod. 89(3), 217–240 (2015)

    Article  Google Scholar 

  40. T. Sagiya: A decade of GEONET: 1994–2003 – The continuous GPS observation in Japan and its impact on earthquake studies, Earth Planets Space 56(8), xxix–xlii (2004)

    Article  Google Scholar 

  41. D. Norin, J. Sunna, R. Lundell, G. Hedling, U. Olsson: Test of RTCM version 3.1 network RTK correction messages (MAC) in the field and on board a ship for uninterrupted navigation, Proc. ION GNSS 2012, Nashville (ION, Virginia 2012) pp. 1147–1157

    Google Scholar 

  42. C. Bruyninx: The EUREF permanent network: A multi-disciplinary network serving surveyors as well as scientists, GeoInformatics 7(5), 32–35 (2004)

    Google Scholar 

  43. J.M. Dow, R.E. Neilan, C. Rizos: The international GNSS service in a changing landscape of global navigation satellite systems, J. Geod. 83(3/4), 191–198 (2009)

    Article  Google Scholar 

  44. W.R. Dick, B. Richter: The International Earth Rotation and Reference Systems Service (IERS). In: Organizations and Strategies in Astronomy, Vol. 5, ed. by A. Heck (Kluwer Academic, Dordrecht 2004) pp. 159–168

    Chapter  Google Scholar 

  45. H.-P. Plag, M. Pearlman (Eds.): Global Geodetic Observing System: Meeting the Requirements of a Global Society on a Changing Planet in 2020 (Springer, Berlin, Heidelberg 2009)

    Google Scholar 

  46. T. Herring: Geodesy: Treatise on Teophysics, Vol. 3 (Elsevier, New York 2009)

    Google Scholar 

  47. Guideline for Control Surveys by GNSS, Special Publication 1, v.2.1 (Australia’s Intergovernmental Committee for Surveying and Mapping, Canberra 2014)

    Google Scholar 

  48. Guidelines for cadastral surveying using GNSS. In: Survey Practice Handbook – Part 2: Survey Procedures (Surveyors Registration Board of Victoria, Melbourne 2006) pp. 1–30

    Google Scholar 

  49. J. Wentzel, B. Donahue, R. Berg: Guidelines for RTK/RTN GNSS Surveying in Canada, v.1.1 (Natural Resources Canada, Ottawa 2013)

    Google Scholar 

  50. W. Henning: User Guidelines for Single Base Real Time GNSS Positioning, v3.1.1 (National Oceanic and Atmospheric Administration, National Geodetic Survey, Silver Spring 2011)

    Google Scholar 

  51. F.G.C. Committee: Geometric Geodetic Accuracy Standards and Specifications for Using GPS Relative Positioning Techniques, 5th edn. (National Geodetic Survey, NOAA, Rockville 1989)

    Google Scholar 

  52. Guidance Notes for GNSS RTK Surveying in Great Britain, 4th edn. (The Survey Association, Newark-on-Trent 2015)

    Google Scholar 

  53. GPS survey Specifications. In: Surveys Manual (California’s Department of Transport, Office of Land Surveys, Sacramento 2012)

    Google Scholar 

  54. B.F. Kavanagh, S.J.G. Bird: Surveying: Principles and Applications, 9th edn. (Prentice Hall, Upper Saddle River 2013)

    Google Scholar 

  55. J. Uren, W.F. Price: Surveying for Engineers, 5th edn. (Palgrave Macmillan, London 2010)

    Google Scholar 

  56. C. Ogaja, X. Li, C. Rizos: Advances in structural monitoring with global positioning system technology: 1997–2006, J. Appl. Geod. 1(3), 171–179 (2007)

    Google Scholar 

  57. K. Kraus: Photogrammetry: Geometry from Images and Laser Scans (Walter de Gruyter, Berlin 2007)

    Book  Google Scholar 

  58. P. Dale, J. McLaughlin: Land Administration (Oxford Univ. Press, Oxford 2000)

    Google Scholar 

  59. C. Rizos: GPS, GNSS and the future. In: Manual of Geospatial Science and Technology, 2nd edn., ed. by J. Bossler, J.B. Campbell, R. McMaster, C. Rizos (Taylor Francis, London 2010) pp. 259–281

    Chapter  Google Scholar 

  60. G.D. Vermeulen, J.N. Tullberg, W.C.T. Chamen: Controlled traffic farming. In: Soil Engineering, ed. by A.P. Dedousis, T. Bartzanas (Springer, Berlin 2010) pp. 101–120

    Chapter  Google Scholar 

  61. B. Whelan, J. Taylor: Precision Agriculture for Grain Production Systems (CSIRO Publishing, Collingwood 2013)

    Google Scholar 

  62. C. Rizos: Carrying out a GPS surveying/mapping task. In: Manual of Geospatial Science and Technology, 2nd edn., ed. by J. Bossler, J.B. Campbell, R. McMaster, C. Rizos (Taylor Francis, London 2010) pp. 217–234

    Chapter  Google Scholar 

  63. G. Petrie: Mobile mapping systems – An introduction to the technology, GEOinformatics January/February, 32–43 (2010)

    Google Scholar 

  64. A.E. Ingham, V.J. Abbott: Hydrography for the Surveyor and Engineer, 3rd edn. (Wiley-Blackwell, Hoboken 1993)

    Google Scholar 

  65. R.P. Loweth: Manual of Offshore Surveying for Geoscientists and Engineers (Chapman Hall, London 1997)

    Book  Google Scholar 

  66. A. Peacock: The Principles of Navigation: The Admiralty Manual of Navigation, Vol. 1, 10th edn. (The Nautical Institute, London 2008)

    Google Scholar 

  67. T.A. Stansell: The Navy navigation satellite system: Description and status, Navigation 15(3), 229–243 (1968)

    Article  Google Scholar 

  68. R.J. Danchik: An overview of transit development, John Hopkins APL Tech. Digest 19(1), 18–26 (1998)

    Google Scholar 

  69. Manual on Hydrography, 1st edn. (International Hydrographic Bureau, Monaco 2011)

    Google Scholar 

  70. IHO Standards for Hydrographic Surveying, 5th edn., Special Publication No. 44, (International Hydrographic Bureau, Monaco 2008)

    Google Scholar 

  71. Regulations of the IHO for International Charts and Chart Specifications of the IHO, edn. 4.4.0, Special Publication No. 4, (International Hydrographic Bureau, Monaco 2013)

    Google Scholar 

  72. Photo source: https://commons.wikimedia.org/wiki/Category:Ndurance_(ship,_2012)#/media/File:Ndurance_-_IMO_9632466_leaving_Port_of_Rotterdam,_pic1.JPG

  73. L. Rodrigo, H. Landau, M. Nitschke, M. Glocker, S. Seeger, X. Chen, A. Deking, M. BenTahar, F. Zhang, K. Ferguson, R. Stolz, N. Talbot, G. Lu, T. Allison, M. Brandl, V. Gomez, W. Cao, A. Kipka: RTX Positioning: The next generation of cm-accurate real-time GNSS positioning, Proc. ION GNSS 2011, Portland (ION, Virginia 2011) pp. 1460–1475

    Google Scholar 

  74. T. Melgard, E. Vigen, O. Orpen: Advantages of combined GPS and GLONASS PPP – Experiences based on G2, a new service from Fugro, Proc. 13th IAIN World Congress, Stockholm (IAIN, London 2009) pp. 1–7

    Google Scholar 

  75. L. Dai, R.R. Hatch: Integrated StarFire GPS with GLONASS for real-time precise navigation and positioning, Proc. ION GNSS 2011, Portland (ION, Virginia 2011) pp. 1476–1485

    Google Scholar 

  76. C. Rocken, L. Mervart, J. Johnson, Z. Lukes, T. Springer, T. Iwabuchi, S. Cummins: A new real-time global GPS and GLONASS precise positioning correction service: Apex, Proc. ION GNSS 2011, Portland (ION, Virginia 2011) pp. 1825–1838

    Google Scholar 

  77. Department of Defense World Geodetic System 1984 (WGS84): Its Definition and Relationships with Local Geodetic Systems, Publication NIMA TR8350.2, 3rd ed., amendm. 1 (National Imagery and Mapping Agency, Reston 2000)

    Google Scholar 

  78. Tidal Datums and their Applications, NOAA Special Publication NOS CO-OPS 1 (National Oceanic and Atmospheric Administration, Silver Spring 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Rizos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rizos, C. (2017). Surveying. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_35

Download citation

Publish with us

Policies and ethics