Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Zusammenfassung

The Global Positioning System (GlossaryTerm

GPS

) has been available for civilian use for the past three decades and is now extensively used in aviation to support multiple applications.

This chapter describes how GNSS is used in aviation, the performance requirements that are being applied and the operational applications that have been enabled. It describes how conventional navigation has been gradually replaced by area navigation, the global introduction of Performance Based Navigation (GlossaryTerm

PBN

) and how the availability of GNSS has played a significant role in that evolution. The performance requirements for the different phases of flight are presented including the different methods by which the navigation integrity is ensured.

The goal of this chapter is to provide the reader with an overview of how GNSS has been adopted in aviation and explain how it has been integrated onto the aircraft alongside other navigation systems. The regulatory and certification process is also described to introduce the mechanisms by which aircraft operators can get approval to use GNSS in their daily operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A-PNT:

alternative positioning navigation and timing

ABAS:

aircraft based augmentation system

ADF:

automatic direction finding

ADS:

automatic dependent surveillance

APV:

approach with vertical guidance

CFIT:

controlled flight into terrain

CRC:

cyclic redundancy check

DH:

decision height

DME:

distance measuring equipment

EGNOS:

European Geostationary Navigation Overlay Service

FAA:

US Federal Aviation Administration

FMS:

flight management system

FTE:

flight technical error

GAGAN:

GPS-aided GEO Augmented Navigation

GBAS:

ground-based augmentation system

GPS:

Global Positioning System

ICAO:

International Civil Aviation Organization

ICD:

interface control document

ILS:

instrument landing system

IRNSS:

Indian Regional Navigation Satellite System

MSAS:

Multi-Function Satellite Augmentation System

NDB:

nondirectional beacon

NOTAM:

notice to airmen

NPA:

nonprecision approach

NSE:

navigation system error

PBN:

performance based navigation

RAIM:

receiver autonomous integrity monitoring

RNAV:

area navigation

RTCA:

Radio Technical Commission for Aeronautics

SARPS:

standards and recommended practices

SA:

selective availability

SBAS:

satellite-based augmentation system

SDCM:

System for Differential Corrections and Monitoring

SPS:

standard positioning service

TTA:

time-to-alert

VDB:

VHF data broadcast

VOR:

VHF omnidirectional range

WAAS:

Wide Area Augmentation System

References

  1. Performance Based Navigation (PBN) Manual, ICAO Doc. 9613 Ser., 4th edn. (ICAO, 2013)

    Google Scholar 

  2. P.B. Ober, D.-J. Moelker, E. Theunissen, R.C. Meijer, D. van Willigen, R. Rawlings, M. Perry: The suitability of GPS for basic area navigation, Proc. ION GPS, Kansas City (1997) pp. 1007–1018

    Google Scholar 

  3. K.L. Van Dyke: The world after SA: Benefits to GPS integrity, Proc. IEEE PLANS, San Diego (2000) pp. 387–394

    Google Scholar 

  4. K. Doucet, Y. Georgiadou: The issue of selective availability, GPS World 1(5), 53–56 (1990)

    Google Scholar 

  5. K.D. McDonald: GPS in civil aviation, GPS World 2(8), 52–59 (1991)

    Google Scholar 

  6. Minimum Operational Performance Standards for Airborne Supplemental Navigation Equipment Using Global Positioning System (GPS), RTCA DO-208, 07/12/1991 (RTCA, Washington DC 1991)

    Google Scholar 

  7. Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS), TSO-C129a (FAA, Washington DC 1996)

    Google Scholar 

  8. Guidance Material on Airworthiness Approval and Operational Criteria for the use of Navigation Systems in European Airspace Designed for Basic RNAV Operations, JAA Temporary Guidance Leaflet No. 2 (JAA, Hoofddorp 1996)

    Google Scholar 

  9. G.E. Michael: Legal issues including liability associated with the acquisition, use, and failure of GPS/GNSS, J. Navig. 52(2), 246–251 (1999)

    Article  Google Scholar 

  10. S. Malys, J. Slater: Maintenance and enhancement of the World Geodetic System 1984, Proc. ION GPS, Salt Lake City (1994) pp. 17–24

    Google Scholar 

  11. C. Boucher, Z. Altamimi: ITRS, PZ-90 and WGS 84: Current realizations and the related transformation parameters, J. Geod. 75(11), 613–619 (2001)

    Article  Google Scholar 

  12. ICAO: Annex 10 to the Convention on Civil Aviation, Aeronautical Telecommunications, Radio Navigation Aids, Vol. 1, 6th edn. (ICAO, Montreal 2006)

    Google Scholar 

  13. GPS Standard Positioning Service Performance Standard, 4th edn. (US Department of Defense, Washington DC 2008)

    Google Scholar 

  14. V. Iatsouk: Development of standards for aeronautical satellite navigation system, Acta Astronaut. 54(11), 961–963 (2004)

    Article  Google Scholar 

  15. W.Y. Ochieng, K. Sauer, D. Walsh, G. Brodin, S. Griffin, M. Denney: GPS integrity and potential impact on aviation safety, J. Navig. 56(1), 51–65 (2003)

    Article  Google Scholar 

  16. D. Lawrence, D. Bunce, N.G. Mathur, C.E. Sigler: Wide Area Augmentation System (WAAS), Program Status, ION GNSS, Fort Worth (2007) pp. 892–899

    Google Scholar 

  17. P. Feuillet: EGNOS program status, ION GNSS, Nashville (2012) pp. 1017–1033

    Google Scholar 

  18. T. Sakai, H. Tashiro: MSAS status, ION GNSS, Nashville (2013) pp. 2343–2360

    Google Scholar 

  19. K.N.S. Rao: GAGAN – The Indian satellite based augmentation system, Indian J. Radio Space Phys. 36(4), 293 (2007)

    Google Scholar 

  20. S. Karutin: SDCM program status, ION GNSS, Nashville (2012) pp. 1034–1044

    Google Scholar 

  21. A.A. Herndon, M. Cramer, K. Sprong: Analysis of advanced flight management systems (FMS), flight management computer (FMC) field observations trials, radius-to-fix path terminators, Proc. IEEE/AIAA 27th Digit. Avion. Syst. Conf., St. Paul (2008) pp. 2.A.5-1–2.A.5-15

    Google Scholar 

  22. ARINC 424-20, Navigation System Database Standard (Aeronautical Radio, Annapolis 2011)

    Google Scholar 

  23. RTCA DO 200A/Eurocae ED76: Standards for Processing Aeronautical Data (1998)

    Google Scholar 

  24. RTCA DO 201A/Eurocae ED77: Standards for Aeronautical Information (2000)

    Google Scholar 

  25. B. Haltli, P. Ewing, H. Williams: Global navigation satellite system (GNSS) and area navigation (RNAV) benefiting general aviation, Proc. 24th Digit. Avion. Syst. Conf., Crystal City (2005) pp. 13.A.5-1–13.A.5-8

    Google Scholar 

  26. Roadmap for Performance Based Navigation, Evolution for Area Navigation (RNAV) and Required Navigation Performance (RNP) Capabilities 2006-2025, Version 2.0 (FAA, Washington DC 2006)

    Google Scholar 

  27. European Airspace Concept Handbook for PBN Implementation, 3rd edn. (Eurocontrol, Brussels 2013)

    Google Scholar 

  28. K. Kovach: Continuity: The hardest GNSS requirement of all, Proc. ION GPS, Nashville (1998) pp. 2003–2020

    Google Scholar 

  29. I. Mallett, K. Van Dyke: GPS availability for aviation applications: How good does it need to be?, Proc. ION GPS, Salt Lake City (2000) pp. 705–712

    Google Scholar 

  30. R.G. Brown: A baseline GPS RAIM scheme and a note on the equivalence of three RAIM methods, Navigation 39(3), 301–316 (1992)

    Article  Google Scholar 

  31. J.P. Fernow, Y.C. Lee: Analysis supporting FAA decisions made during the development of TSO C-129, Proc. ION AM 1994, Colorado Springs (1994) pp. 219–228

    Google Scholar 

  32. P.B. Ober: RAIM Performance: How Algorithms Differ, ION GPS 1998, Nashville 15-18 Sep. 1998 (ION, Virginia 1998) pp. 2021–2030

    Google Scholar 

  33. A. Martineau, Ch. Macabiau, M. Mabilleau: GNSS RAIM assumptions for vertically guided approaches, ION GNSS 2009, Savannah Sep. 2009 (ION, Virginia 2009) pp. 2791–2803

    Google Scholar 

  34. Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment, RTCA DO229D, 13/12/2006 (RTCA, Washington DC 2006)

    Google Scholar 

  35. D.A.G. Harriman, J. Wilde, P.B. Ober: EUROCONTROL’s predictive RAIM tool for en-route aircraft navigation, IEEE Aerosp. Conf. 1999, Snowmass at Aspen 6-13 Mar. 1999 (IEEE, New York 1999) pp. 385–393

    Google Scholar 

  36. ADS-B Service Availability Prediction Tool Receiver Autonomous Integrity Monitoring User Guide, v2.0, 30 Apr. 2014 (FAA, Washington DC 2014)

    Google Scholar 

  37. Massimini, V. McNeil, G. Scales, W.: Proposed Concept of Operation for a GNSS NOTAM and Aeronautical Information System (The MITRE Corporation, Bedford 2008)

    Google Scholar 

  38. Airborne Supplemental Navigation Sensors for Global Positioning System Equipment Using Aircraft Based Augmentation, TSO-C196 (FAA, Washington DC 2009)

    Google Scholar 

  39. Minimum Operational Performance Standards for Global Positioning System/Aircraft Base Augmentation System, RTCA DO-316 (RTCA, Washington DC 2009)

    Google Scholar 

  40. Airborne Navigation Sensors Using the Global Positioning System Augmented by the Satellite Based Augmentation System, TSO-C145c (FAA, Washington DC 2008)

    Google Scholar 

  41. Stand-alone Airborne Equipment Using the Global Positioning System Augmented by the Satellite Based Augmentation System, TSO-C146c (FAA, Washington DC 2008)

    Google Scholar 

  42. Airworthiness Approval of Positioning and Navigation systems, FAA Advisory Circular (AC), 20-138D, 28/03/2014 (FAA, Washington DC 2014)

    Google Scholar 

  43. European Aviation Safety Agency: Airworthiness Approval and Operational Criteria for RNP Approach (RNP APCH) Operations Including APV Baro/VNAV Operations, AMC 20-27 (EASA, Cologne 2009)

    Google Scholar 

  44. European Aviation Safety Agency: Airworthiness Approval and Operational Criteria for RNAV GNSS Approach Operation to LPV Minima Using SBAS, AMC 20-28 (EASA, Cologne 2012)

    Google Scholar 

  45. K.L. Gold, A.K. Brown: A hybrid integrity solution for precision landing and guidance, IEEE PLANS 2004 (IEEE, New York 2004) pp. 165–174

    Google Scholar 

  46. C. Rekkas, M. Rees: Towards ADS-B implementation in Europe, Proc. Tyrrhenian Int. Workshop Digit. Commun.-Enhanc. Surveill. Aircr. Veh. (TIWDC/ESAV), Capri (IEEE, New York 2008)

    Google Scholar 

  47. T. Delovski, K. Werner, T. Rawlik, J. Behrens, J. Bredemeyer, R. Wendel: ADS-B over satellite – The world's first ADS-B receiver in space, 4S Small Satell. Syst. Serv. Symp. 2014, ESA, Noordwijk (2014)

    Google Scholar 

  48. N. Xu, R. Cassell, C. Evers, S. Hauswald, W. Langhans: Performance assessment of Multilateration Systems – A solution to nextgen surveillance, Proc. Integr. Commun. Navig. Surveill. Conf. (ICNS’10), Herndon (IEEE, New York 2010), pp. D2-1–D2-8

    Google Scholar 

  49. C. Collings, J. Harwood: Data link messaging standards for NextGen data communications, Proc. Integr. Commun. Navig. Surveill. Conf. (ICNS’09), Arlington (IEEE, 2009)

    Google Scholar 

  50. Time and Standard Frequency Station DCF77 (Germany), http://www.eecis.udel.edu/~mills/ntp/dcf77.html

  51. J.V. Carroll: Vulnerability assessment of the US transportation infrastructure that relies on the global positioning system, J. Navig. 56(2), 185–193 (2003)

    Article  Google Scholar 

  52. D. Last: GPS forensics, crime, and jamming, GPS World 20(10), 8–12 (2009)

    Google Scholar 

  53. C. Dixon, S. Smith, A. Hart, R. Keast, S. Lithgow, A. Grant, J. Šafář, G. Shaw, C. Hill, S. Hill, C. Betty: Specification and testing of GNSS vulnerabilities, Proc. ENC-GNSS 2013, Vienna (ENC, Vienna 2013) pp. 1–12

    Google Scholar 

  54. E. Kim: Investigation of APNT optimized DME/DME network using current state-of-the-art DMEs: Ground station network, accuracy, and capacity, IEEE/ION PLANS 2012, Myrtle Beach (IEEE, New York 2012) pp. 146–157

    Google Scholar 

  55. Concept of Operations for NextGen Alternative Positioning, Navigation and Timing (APNT) (FAA, Washington DC 2012)

    Google Scholar 

  56. C.J. Hegarty, E. Chatre: Evolution of the Global Navigation Satellite System (GNSS), Proc. IEEE 96(12), 1902–1917 (2008)

    Article  Google Scholar 

  57. J. Blanch, T. Walter, P. Enge: Satellite navigation for aviation in 2025, Proc. IEEE 100, 1821–1830 (2012)

    Article  Google Scholar 

  58. F. Salabert: Operational benefits of multi-constellation dual frequency GNSS for aviation, Coordinates 11(3), 43–45 (2015)

    Google Scholar 

  59. B. Bonet, I. Alcantarilla, D. Flament, C. Rodriguez, N. Zarraoa: The Benefits of Multi-constellation GNSS: Reaching up Even to Single Constellation GNSS Users, ION GNSS 2009, 22-25 Savannah (ION, Virginia 2009) pp. 1268–1280

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Farnworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farnworth, R. (2017). Aviation Applications. In: Teunissen, P.J., Montenbruck, O. (eds) Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-42928-1_30

Download citation

Publish with us

Policies and ethics