Satellite Orbits and Attitude

  • Urs Hugentobler
  • Oliver Montenbruck
Part of the Springer Handbooks book series (SPRINGERHAND)

Zusammenfassung

This chapter discusses fundamentals of orbital dynamics and provides a description of key perturbations affecting global navigation satellite system (GNSS ) satellites along with their impact on the orbits. Models for perturbing accelerations including Earth gravity, third body perturbations, surface forces, and relativistic corrections are described with emphasis on empirical and semiempirical solar radiation pressure models. Long-term evolution of GNSS orbits and orbit keeping maneuvers are discussed. The concepts of broadcast orbit models such as almanac models, analytical ephemeris models and numerical ephemeris models used by current GNSS systems are presented along with cook book algorithms and a summary of their performance. Complementary to the discussion of GNSS satellite orbits, the chapter introduces the basic concepts of GNSS satellite attitude, which are, for example, required to describe the antenna location relative to the center-of-mass.

Keywords

Global Position System Global Navigation Satellite System Global Navigation Satellite System Satellite Laser Range International GNSS Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
CNAV

civil navigation message

CODE

Center for Orbit Determination in Europe

CoM

center-of-mass

ECOM

Empirical CODE Orbit Model

GEO

geostationary Earth orbit

GLONASS

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GNSS

global navigation satellite system

GPS

Global Positioning System

ICD

interface control document

IGS

International GNSS Service

IGSO

inclined geo-synchronous orbit

IOV

in-orbit validation

ITRF

International Terrestrial Reference Frame

JPL

Jet Propulsion Laboratory

LNAV

legacy navigation message

MEO

medium Earth orbit

QZSS

Quasi-Zenith Satellite System

RAAN

right ascension of ascending node

RMS

root mean square

SBAS

satellite-based augmentation system

SLR

satellite laser ranging

SVN

space vehicle number

References

  1. 3.1
    G. Beutler: Methods of Celestial Mechanics (Springer, Berlin 2005)CrossRefGoogle Scholar
  2. 3.2
    R. Fitzpatrick: An Introduction to Celestial Mechanics (Cambridge Univ. Press, Cambridge 2012)CrossRefGoogle Scholar
  3. 3.3
    W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, H. Küstner: The VNR Concise Encyclopedia of Mathematics, 2nd edn. (Van Nostrand Reinhold, New York 1989)Google Scholar
  4. 3.4
    D.A. Vallado: Fundamentals of Astrodynamics and Applications, 2nd edn. (Kluwer Academic, Dordrecht 2001)Google Scholar
  5. 3.5
    O. Montenbruck, E. Gill: Satellite Orbits – Models, Methods and Applications (Springer, Berlin 2000)Google Scholar
  6. 3.6
    P.J. Mohr, B.N. Taylor, D.B. Newell: CODATA recommended values of the fundamental physical constants: 2010, J. Phys. Chem. Ref. Data 41(4), 043109 (2012)CrossRefGoogle Scholar
  7. 3.7
    G. Petit, B. Luzum: IERS Conventions (Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt 2010), IERS Technical Note No. 36Google Scholar
  8. 3.8
    R.H. Battin: An Introduction to the Mathematics and Methods of Astrodynamics (AIAA, New York 1999)CrossRefGoogle Scholar
  9. 3.9
    D. Brouwer: Solution of the problem of artificial satellite theory without drag, Astron. J. 64, 378–396 (1959)CrossRefGoogle Scholar
  10. 3.10
    I. Kozai: Second-order analytical solution of artificial satellite theory without air drag, Astron. J. 67(7), 446–461 (1962)CrossRefGoogle Scholar
  11. 3.11
    W.M. Kaula: Theory of Satellite Geodesy (Blaisdell, Waltham 1966)Google Scholar
  12. 3.12
    L.E. Cunningham: On the computation of the spherical harmonic terms needed during the numerical integration of the orbital motion of an artificial satellite, Celest. Mech. 2(2), 207–216 (1970)CrossRefGoogle Scholar
  13. 3.13
    R. Pail, S. Bruinsma, F. Migliaccio, C. Förste, H. Goiginger, W.-D. Schuh, E. Höck, M. Reguzzoni, J.M. Brockmann, O. Abrikosov, M. Veicherts, T. Fecher, R. Mayrhofer, I. Krasbutter, F. Sansò, C.C. Tscherning: First GOCE gravity field models derived by three different approaches, J. Geod. 85(11), 819–843 (2011)CrossRefGoogle Scholar
  14. 3.14
    N.K. Pavlis, S.A. Holmes, S.C. Kenyon, J.K. Factor: The development and evaluation of the Earth gravitational model 2008 (EGM2008), J. Geophys. Res. Solid Earth 117(B4), 1978–2012 (2012)CrossRefGoogle Scholar
  15. 3.15
    F. Lyard, F. Lefèvre, T. Letellier, O. Francis: Modelling the global ocean tides: A modern insight from FES2004, Ocean Dyn. 56, 394–415 (2006)CrossRefGoogle Scholar
  16. 3.16
    R. Savcenko, W. Bosch: EOT11a-Empirical Ocean Tide Model from Multi-Mission Satellite Altimetry, Vol. 89 (Deutsches Geodätisches Forschungsinstitut, Munich 2010) p. 49Google Scholar
  17. 3.17
    M. Soffel: Report of the working group relativity for celestial mechanics and astrometry. In: IAU Colloquium 180, ed. by K. Johnston, D.D. McCarthy, B.J. Luzum, G.H. Kaplan (US Naval Observatory, Washington 2000) pp. 283–292Google Scholar
  18. 3.18
    A. Milani, A.M. Nobili, P. Farinella: Non-Gravitational Perturbations and Satellite Geodesy (Adam Hilger, Bristol 1987)Google Scholar
  19. 3.19
    G. Kopp, A. Fehlmann, W. Finsterle, D. Harber, K. Heuerman: Total solar irradiance data record accuracy and consistency improvements, Metrologia 49, 29–33 (2012), S29–S33CrossRefGoogle Scholar
  20. 3.20
    P.C. Knocke, J.C. Ries, B.D. Tapley: Earth radiation pressure effects on satellites, Proc. AIAA/AAS Astrodyn. Conf. Minneapolis (AIAA, Reston 1988) pp. 577–587Google Scholar
  21. 3.21
    C.J. Rodriguez-Solano, U. Hugentobler, P. Steigenberger, S. Lutz: Impact of earth radiation pressure on GPS position estimates, J. Geod. 86(5), 309–317 (2012)CrossRefGoogle Scholar
  22. 3.22
    D. Rubincam: LAGEOS orbit decay due to infrared radiation from earth, J. Geophys. Res. 92, 1287–1294 (1987)CrossRefGoogle Scholar
  23. 3.23
    R. Scharroo, K.F. Wakker, B.A.C. Ambrosius, R. Noomen: On the along-track acceleration of the LAGEOS satellite, J. Geophys. Res. 81, 729–740 (1991)CrossRefGoogle Scholar
  24. 3.24
    K.J. Sośnica: Determination of Precise Satellite Orbits and Geodetic Parameters Using Satellite Laser Ranging, Vol. 93 (Geodätisch-geophysikalische Arbeiten in der Schweiz, Schweizerische Geodätische Kommission, Zürich 2015)Google Scholar
  25. 3.25
    H.F. Fliegel, T.E. Gallini, E.R. Swift: Global positioning system radiation force model for geodetic applications, J. Geophys. Res. 97(B1), 559–568 (1992)CrossRefGoogle Scholar
  26. 3.26
    H.F. Fliegel, T.E. Gallini: Solar force modeling of block IIR global positioning system satellites, J. Spacecr. Rockets 33(6), 863–866 (1996)CrossRefGoogle Scholar
  27. 3.27
    W. Marquis, C. Krier: Examination of the GPS block IIR solar pressure model, Proc. ION GPS 2000, Salt Lake City, 2000 (Institute of Navigation, Virginia 2000) pp. 407–415Google Scholar
  28. 3.28
    M. Ziebart, P. Dare: Analytical solar radiation pressure modelling for GLONASS using a pixel array, J. Geod. 57(11), 587–599 (2001)CrossRefGoogle Scholar
  29. 3.29
    M. Ziebart: Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape, J. Spacecr. Rockets 41(5), 840–848 (2004)CrossRefGoogle Scholar
  30. 3.30
    M. Ziebart, S. Edwards, S. Adhya, A. Sibthorpe, P. Arrowsmith, P. Cross: High precision GPS IIR orbit prediction using analytical non-conservative force models, Proc. ION GNSS 2004, Long Beach, 2004 (ION, Virginia 2004) pp. 1764–1770Google Scholar
  31. 3.31
    M. Ziebart, S. Adhya, A. Sibthorpe, S. Edwards, P. Cross: Combined radiation pressure and thermal modelling of complex satellites: Algorithms and on-orbit tests, Adv. Space Res. 36(3), 424–430 (2005)CrossRefGoogle Scholar
  32. 3.32
    J.M. Dow, R.E. Neilan, C. Rizos: The international GNSS service in a changing landscape of global navigation satellite systems, J. Geod. 83(3/4), 191–198 (2009)CrossRefGoogle Scholar
  33. 3.33
    G. Beutler, E. Brockmann, W. Gurtner, U. Hugentobler, L. Mervart, M. Rothacher, A. Verdun: Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): Theory and initial results, Manuscr. Geod. 19, 367–386 (1994)Google Scholar
  34. 3.34
    A. Springer: Modeling and Validating Orbits and Clocks Using the Global Positioning System, Vol. 60 (Geodätisch-geophysikalische Arbeiten in der Schweiz, Schweizerische Geodätische Kommission, Zürich 1999)Google Scholar
  35. 3.35
    T. Springer, G. Beutler, M. Rothacher: A new solar radiation pressure model for GPS satellites, GPS Solutions 2(3), 50–62 (1999)CrossRefGoogle Scholar
  36. 3.36
    Y.E. Bar-Sever, K.M. Russ: New and Improved Solar Radiation Models for GPS Satellites Based on Flight Data, Final Report Task Plan 80-4193 (Jet Propulsion Laboratory, Pasadena 1997)Google Scholar
  37. 3.37
    Y.E. Bar-Sever, D. Kuang: New Empirically Derived Solar Radiation Pressure Model for Global Positioning System Satellites, IPN Progress Report 42–159 (Jet Propulsion Laboratory, Pasadena 2004)Google Scholar
  38. 3.38
    A. Sibthorpe, W. Bertiger, S.D. Desai, B. Haines, N. Harvey, J.P. Weiss: An evaluation of solar radiation pressure strategies for the GPS constellation, J. Geod. 85(8), 505–517 (2011)CrossRefGoogle Scholar
  39. 3.39
    C.J. Rodriguez-Solano, U. Hugentobler, P. Steigenberger: Adjustable box-wing model for solar radiation pressure impacting GPS satellites, Adv. Space Res. 49(7), 1113–1128 (2012)CrossRefGoogle Scholar
  40. 3.40
    C.J. Rodriguez-Solano, U. Hugentobler, P. Steigenberger, G. Allende-Alba: Improving the orbits of GPS block IIA satellites during eclipse seasons, Adv. Space Res. 52(8), 1511–1529 (2013)CrossRefGoogle Scholar
  41. 3.41
    C.J. Rodriguez-Solano, U. Hugentobler, P. Steigenberger, M. Bloßfeld, M. Fritsche: Reducing the draconitic errors in GNSS geodetic products, J. Geod. 88, 559–574 (2014)CrossRefGoogle Scholar
  42. 3.42
    M. Meindl, G. Beutler, D. Thaller, R. Dach, A. Jäggi: Geocenter coordinates estimated from GNSS data as viewed by perturbartion theory, Adv. Space Res. 51(7), 1047–1064 (2013)CrossRefGoogle Scholar
  43. 3.43
    D. Arnold, M. Meindl, G. Beutler, R. Dach, S. Schaer, S. Lutz, L. Prange, K. Sosnica, L. Mervart, A. Jäggi: CODE’s new solar radiation pressure model for GNSS orbit determination, J. Geod. 89(8), 775–791 (2015)CrossRefGoogle Scholar
  44. 3.44
    P. Steigenberger, U. Hugentobler, S. Loyer, F. Perosanz, L. Prange, R. Dach, M. Uhlemann, G. Gendt, O. Montenbruck: Galileo orbit and clock quality of the IGS multi-GNSS experiment, Adv. Space Res. 55(1), 269–281 (2014)CrossRefGoogle Scholar
  45. 3.45
    O. Montenbruck, P. Steigenberger, U. Hugentobler: Enhanced solar radiation pressure modeling for galileo satellites, J. Geod. 89(3), 283–297 (2015)CrossRefGoogle Scholar
  46. 3.46
    M. Ziebart, A. Sibthorpe, P. Cross, Y. Bar-Sever, B. Haines: Cracking the GPS-SLR orbit anomaly, Proc. ION GNSS 2007, Fort Worth (ION, Virginia 2007) pp. 2033–2038Google Scholar
  47. 3.47
    Y. Vigue, B.E. Schutz, P.A.M. Abusali: Thermal force modeling for global positioning system satellites using the finite element method, J. Spacecr. Rockets 31(5), 855–859 (1994)CrossRefGoogle Scholar
  48. 3.48
    S. Adhya, M. Ziebart, A. Sibthorpe, P. Arrowsmith, P. Cross: Thermal force modeling for precise prediction and determination of spacecraft orbits, Navigation 52(3), 131–144 (2005)CrossRefGoogle Scholar
  49. 3.49
    J. Duha, G.B. Afonso, L.D. Damasceno Ferreira: Thermal re-emission effects on GPS satellites, J. Geod. 80(12), 665–674 (2006)CrossRefGoogle Scholar
  50. 3.50
    U. Hugentobler: Astrometry and Satellite Orbits: Theoretical Consideration and Typical Applications, Vol. 57 (Geodätisch-geophysikalische Arbeiten in der Schweiz, Schweizerische Geodätische Kommission, Zürich 1998)Google Scholar
  51. 3.51
    R.R. Allan, G.E. Cook: The long-period motion of the plane of a distant circular orbit, Proc. R. Soc. Lond. A 280, 97–109 (1964)CrossRefGoogle Scholar
  52. 3.52
    A. Rossi: Resonant dynamics of medium earth orbits: Space debris issues, Celest. Mech. Dyn. Astron. 100(4), 267–286 (2008)CrossRefGoogle Scholar
  53. 3.53
    B. Schutz, G. Giacaglia: Decade-scale gps orbit evolution and third body perturbations, Proc. AIAA/AAS Astrodyn. Specialist Conf. Exhib. Honoloulu (AIAA, Reston 2008), AIAA 2008-7070Google Scholar
  54. 3.54
    F. Deleflie, A. Rossi, C. Portmann, G. Métris, F. Barlier: Semi-analytical investigations of the long-term evolution of the eccentricity of Galileo and GPS-like orbits, Adv. Space Res. 47(5), 811–821 (2011)CrossRefGoogle Scholar
  55. 3.55
    M. Fritsche, K. Sośnica, C.J. Rodríguez-Solano, P. Steigenberger, K. Wang, R. Dietrich, R. Dach, U. Hugentobler, M. Rothacher: Homogeneous reprocessing of GPS, GLONASS and SLR observations, J. Geod. 88(7), 625–642 (2014)CrossRefGoogle Scholar
  56. 3.56
    R. Jehn, A. Rossi, T. Flohrer, D. Navarro-Reyes: Reorbiting of satellites in high altitudes, Proc. 5th Eur. Conf. Space Debris, Darmstadt (ESA, Noordwijk 2009)Google Scholar
  57. 3.57
    C.C. Chao, R.A. Gick: Long-term evolution of navigation satellite orbits: GPS/GLONASS/GALILEO, Adv. Space Res. 34(5), 1221–1226 (2004)CrossRefGoogle Scholar
  58. 3.58
    A.B. Jenkin, J.P. McVey: Constellation and graveyeard collision risk for several MEO disposal strategies, Proc. 5th Eur. Conf. Space Debris, Darmstadt (ESA, Noordwijk 2009)Google Scholar
  59. 3.59
    A. Rossi, I. Anselmo, C. Pardini, R. Jehn: Effectiveness of the de-orbiting practices in the meo region, Proc. 5th Eur. Conf. Space Debris, Darmstadt (ESA, Noordwijk 2009)Google Scholar
  60. 3.60
    J. Radtke, R. Domínguez-González, S. Flegel, N. Sánchez-Ortiz, K. Merz: Impact of eccentricity build-up and graveyard disposal strategies on MEO navigation constellations, Adv. Space Res. 56(11), 2626–2644 (2015)CrossRefGoogle Scholar
  61. 3.61
    J. Griffiths, J. Ray: On the precision and accuracy of IGS orbits, J. Geod. 83, 277–287 (2009)CrossRefGoogle Scholar
  62. 3.62
    M. Pearlman, J. Degnan, J. Bosworth: The international laser ranging service, Adv. Space Res. 30(2), 125–143 (2002)CrossRefGoogle Scholar
  63. 3.63
    J.J. Miller, J. LaBreque, A.J. Oria: Laser reflectors to ride on board GPS III, GPS World 24(9), 12–17 (2013)Google Scholar
  64. 3.64
    J. Griffiths, J.R. Ray: Sub-daily alias and draconitic errors in the IGS orbits, GPS Solutions 17, 413–422 (2013)CrossRefGoogle Scholar
  65. 3.65
    C. Urschl, G. Beutler, W. Gurtner, U. Hugentobler, S. Schaer: Contribution of SLR tracking data to GNSS orbit determination, Adv. Space Res. 39(10), 1515–1523 (2007)CrossRefGoogle Scholar
  66. 3.66
    K. Sośnica, D. Thaller, R. Dach, P. Steigenberger, G. Beutler, D. Arnold: Satellite laser ranging to GPS and GLONASS, J. Geod. 89(7), 725–743 (2015)CrossRefGoogle Scholar
  67. 3.67
    P. Steigenberger, U. Hugentobler, A. Hauschild, O. Montenbruck: Orbit and clock analysis of compass GEO and IGSO satellites, J. Geod. 87(6), 515–526 (2013)CrossRefGoogle Scholar
  68. 3.68
    K. Chen, T. Xu, G. Chen, J. Li, S. Yu: The orbit and clock combination of iGMAS analysis centers and the analysis of their precision, Proc. China Satell. Navig. Conf. (CSNC), Xi’an, Vol. 2, ed. by J. Sun, W. Jiao, H. Wu, C. Shi (Springer, Berlin, Heidelberg 2015) pp. 421–438Google Scholar
  69. 3.69
    Navstar GPS Space Segment/Navigation User Segment Interfaces, Interface Specification, IS-GPS-200H (Global Positioning Systems Directorate, Los Angeles Air Force Base, El Segundo 2013)Google Scholar
  70. 3.70
    Global Navigation Satellite System GLONASS – Interface Control Document, v5.1 (Russian Institute of Space Device Engineering, Moscow 2008)Google Scholar
  71. 3.71
    European GNSS (Galileo) Open Service Signal In Space Interface Control Document, OS SIS ICD, Iss. 1.2, Nov. 2015 (European Union 2015)Google Scholar
  72. 3.72
    BeiDou Navigation Satellite System Signal in Space Interface Control Document – Open Service Signal (China Satellite Navigation Office, Beijing 2013)Google Scholar
  73. 3.73
    Quasi-Zenith Satellite System Navigation Service Interface Specification for QZSS, IS-QZSS, v1.6, 28 Nov. 2014 (JAXA, Chofu 2014)Google Scholar
  74. 3.74
    O. Montenbruck, P. Steigenberger, A. Hauschild: Broadcast versus precise ephemerides: A multi-GNSS perspective, GPS Solutions 19(2), 321–333 (2015)CrossRefGoogle Scholar
  75. 3.75
    U. Rossbach: Positioning and Navigation Using the Russian Satellite System GLONASS, Ph.D. Thesis (Univ. d. Bundeswehr München, Neubiberg 2001)Google Scholar
  76. 3.76
    H. Yin, Y. Morton, M. Carroll, E. Vinande: Performance analysis of L2 and L5 CNAV broadcast ephemeris for orbit calculation, Proc. ION ITM 2014, San Diego (ION, Virginia 2014) pp. 761–768Google Scholar
  77. 3.77
    B.W. Remondi: Computing satellite velocity using the broadcast ephemeris, GPS Solutions 8(3), 181–183 (2004)CrossRefGoogle Scholar
  78. 3.78
    J. Zhang, K. Zhang, R. Grenfell, R. Deakin: GPS satellite velocity and acceleration determination using the broadcast ephemeris, J. Navig. 59(2), 293–305 (2006)CrossRefGoogle Scholar
  79. 3.79
    R. Marson, S. Lagrasta, F. Malvolti, T.S.V. Tiburtina: Fast generation of precision orbit ephemeris, Proc. ION ITM 2011, San Diego (ION, Virginia 2011) pp. 565–576Google Scholar
  80. 3.80
    O. Montenbruck, P. Steigenberger: The BeiDou Navigation Message, J. Glob. Position. Syst. 12(1), 1–12 (2013)CrossRefGoogle Scholar
  81. 3.81
    M. Stewart, M. Tsakiri: GLONASS broadcast orbit computation, GPS Solutions 2(2), 16–27 (1998)CrossRefGoogle Scholar
  82. 3.82
    Minimum Operational Performance Standards for GPS/WAAS Airborne Equipment, RTCA DO-229D (RTCA, Washington DC 2006)Google Scholar
  83. 3.83
    T. Reid, T. Walter, P. Enge: L1/L5 SBAS MOPS ephemeris message to support multiple orbit classes, Proc. ION ITM, San Diego (ION, Virginia 2013) pp. 78–92Google Scholar
  84. 3.84
    A.J. Dorsey, W.A. Marquis, P.M. Fyfe, E.D. Kaplan, L.F. Wiederholt: GPS system segments. In: Understanding GPS: Principles and Applications, ed. by E.D. Kaplan, C.J. Hegarty (Artech House, Norwood 2006) pp. 67–112Google Scholar
  85. 3.85
    R. DiEsposti, J. DiLellio, C. Kelley, A. Dorsey, H. Fliegel, J. Berg, C. Edgar, T. McKendree, P. Shome: The proposed state vector representation of broadcast navigation message for user equipment implementation of GPS satellite ephemeris propagation, Proc. ION NTM, San Diego (ION, Virginia 2004) pp. 294–312Google Scholar
  86. 3.86
    D.L. Warren, J.F. Raquet: Broadcast versus precise GPS ephemerides: A historical perspective, GPS Solutions 7(3), 151–156 (2003)CrossRefGoogle Scholar
  87. 3.87
    L. Heng, G.X. Gao, T. Walter, P. Enge: Statistical characterization of GPS signal-in-spaceerrors, Proc. ION ITM, San Diego (ION, Virginia 2011) pp. 312–319Google Scholar
  88. 3.88
    L. Heng, G.X. Gao, T. Walter, P. Enge: Statistical characterization of GLONASS broadcast ephemeris errors, Proc. ION GNSS 2011, Portland (ION, Virginia 2011) pp. 3109–3117Google Scholar
  89. 3.89
    O. Montenbruck, R. Schmid, F. Mercier, P. Steigenberger, C. Noll, R. Fatkulin, S. Kogure, S. Ganeshan: GNSS Satellite Geometry and Attitude Models, Adv. Space Res. 56(6), 1015–1029 (2015)CrossRefGoogle Scholar
  90. 3.90
    J. Kouba: A simplified yaw-attitude model for eclipsing GPS satellites, GPS Solutions 13(1), 1–12 (2009)CrossRefGoogle Scholar
  91. 3.91
    F. Dilssner: GPS IIF-1 satellite, antenna phase center and attitude modeling, Inside GNSS 5(6), 59–64 (2010)Google Scholar
  92. 3.92
    F. Dilssner, T. Springer, W. Enderle: GPS IIF yaw attitude control during eclipse season, Proc. Am. Geophys. Union Fall Meet., San Francisco (AGU, Washington 2011)Google Scholar
  93. 3.93
    F. Dilssner, T. Springer, G. Gienger, J. Dow: The GLONASS-M satellite yaw-attitude model, Adv. Space Res. 47(1), 160–171 (2011)CrossRefGoogle Scholar
  94. 3.94
    Y. Ishijima, N. Inaba, A. Matsumoto, K. Terada, H. Yonechi, H. Ebisutani, S. Ukava, T. Okamoto: Design and developement of the first quasi-zenith satellite attitude and orbit control system, Proc. IEEE Aerosp. Conf. (2009) pp. 1–8Google Scholar
  95. 3.95
    W. Wang, G. Chen, S. Guo, X. Song, Q. Zhao: A study on the Beidou IGSO/MEO satellite orbit determination and prediction of the different yaw control mode, Proc. China Satell. Navig. Conf. (CSNC) 2013, Wuhan, Vol. III, ed. by J. Sun, W. Jiao, H. Wu, C. Shi (Springer, Berlin Heidelberg 2013) pp. 31–40CrossRefGoogle Scholar
  96. 3.96
    J. Guo, Q. Zhao, T. Geng, X. Su, J. Liu: Precise orbit determination for COMPASS IGSO satellites during Yaw maneuvers, Proc. CSNC, Wuhan, ed. by J. Sun, W. Jiao, H. Wu, C. Shi (Springer, Berlin, Heidelberg 2013) pp. 41–53, Vol. IIIGoogle Scholar
  97. 3.97
    A. Hauschild, P. Steigenberger, C. Rodriguez-Solano: QZS-1 yaw attitude estimation based on measurements from the CONGO network, Navigation 59(3), 237–248 (2012)CrossRefGoogle Scholar
  98. 3.98
    J. Guo, Q. Zhao: Analysis of precise orbit determination for BeiDou satellites during yaw maneuvers, Proc. CSNC, Wuhan (2014)Google Scholar
  99. 3.99
    X. Dai, M. Ge, Y. Lou, C. Shi, J. Wickert, H. Schuh: Estimating the yaw-attitude of BDS IGSO and MEO satellites, J. Geod. 89(10), 1005–1018 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Urs Hugentobler
    • 1
  • Oliver Montenbruck
    • 2
  1. 1.Satellite GeodesyTechnical University of MunichMunichGermany
  2. 2.German Aerospace Center (DLR)WesslingGermany

Personalised recommendations