Time and Reference Systems

  • Christopher JekeliEmail author
  • Oliver Montenbruck
Part of the Springer Handbooks book series (SHB)


Geodesy is the science of the measurement and mapping of the Earth’s surface, and in this context it is also the science that defines and realizes coordinates and associated coordinate systems. Geodesy thus is the foundation for all applications of global navigation satellite system (GNSS ). This chapter presents the reference systems needed to describe coordinates of points on the Earth’s surface or in near space and to relate coordinate systems among each other, as well as to some absolute system, visually, a celestial system. The topic is primarily one of geometry, but the geodynamics of the Earth as a rotating body in the solar system plays a fundamental role in defining and transforming coordinate systems. Therefore, also the fourth coordinate, time, is critical not only as the independent variable in the dynamical theories, but also as a parameter in modern geodetic measurement systems. Instead of expounding the theory of geodynamics and celestial mechanics, it is sufficient for the purpose of this chapter to describe the corresponding phenomena, textually, analytically and illustratively, in order to give a sense of the scope of the tasks involved in providing accurate coordinate reference systems not just to geodesists, but to all geoscientists.


Bureau International de l’Heure


Bureau International des Poids et Mesures


circular error probable


celestial intermediate origin


continuously operating reference station


celestial reference frame


celestial reference system


Fundamental Katalog 5


Greenwich apparent sidereal time


Geocentric Celestial Reference System


Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)


GLONASS System Time


global navigation satellite system


Global Positioning System


GPS Time


Galileo System Time


International Astronomical Union


International Celestial Reference Frame


International Celestial Reference System


International Earth Rotation and Reference Systems Service


International Latitude Service


Indian Regional Navigation Satellite System


international reference pole


International Terrestrial Reference Frame


International Terrestrial Reference System


International Telecommunication Union


International Union of Geodesy and Geophysics


Julian day/date


Jet Propulsion Laboratory


North celestial pole


North ecliptic pole


National Institute of Standards and Technology


precise point positioning


Quasi-Zenith Satellite System


satellite laser ranging


standards of fundamental astronomy


International Atomic Time


barycentric coordinate time


Geocentric Coordinate Time


barycentric dynamic time


terrestrial dynamic time


terrestrial intermediate origin


terrestrial time


United States Naval Observatory


Coordinated Universal Time


Universal Time


very long baseline interferometry


  1. 2.1
    D.D. McCarthy, K.P. Seidelmann: Time: From Earth Rotation to Atomic Physics (Wiley-VCH, Weinheim 2009)CrossRefGoogle Scholar
  2. 2.2
    K. Lambeck: Geophysical Geodesy, The Slow Deformations of the Earth (Clarendon, Oxford 1988)Google Scholar
  3. 2.3
    B.N. Taylor, A. Thompson (Eds.): The International System of Units (SI), NIST SP 330 (National Institute of Standards and Technology, Gaithersburg 2008)Google Scholar
  4. 2.4
    SI Brochure: The International System of Units (SI), 8th edn. (Bureau International des Poids et Mesures, Paris 2006)Google Scholar
  5. 2.5
    P.K. Seidelmann: Explanatory Supplement to the Astronomical Almanac (Univ. Science Books, Mill Valley 1992)Google Scholar
  6. 2.6
    G. Petit, B. Luzum: IERS Conventions, IERS Technical Note No. 36 (Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt 2010) Google Scholar
  7. 2.7
    C. Audoin, B. Guinot: The Measurement of Time: Time, Frequency and the Atomic Clock (Cambridge Univ. Press, Cambridge 2001)Google Scholar
  8. 2.8
    Bureau International des Poids et Mesures: BIPM Circular T,
  9. 2.9
    SI Brochure: Practical realization of the definition of the unit of time. In: The International System of Units (SI), 8th edn. (Bureau International des Poids et Mesures, Paris, 2006) App. 2 Google Scholar
  10. 2.10
    D.D. McCarthy: Using UTC to determine the Earth’s rotation angle, Proc. Coll. Explor. Implic. Redefining Coord. Univers. Time (UTC), Exton, ed. by S.L. Allen, J.H. Seago, R.L. Seaman (Univelt, San Diego 2011) pp. 105–116Google Scholar
  11. 2.11
    Standard-Frequency and Time-Signal Emissions, ITU-R Recommendation TF.460-6 (International Telecommunication Union, Radio-communication Bureau, Geneva, Feb. 2002)Google Scholar
  12. 2.12
    USNO: TAI minus UTC time difference
  13. 2.13
    R.A. Nelson, D.D. McCarthy: S.N. Malys, J. Levine, B. Guinot, H. F. Fliegel, R. L. Beard, T. R. Bartholomew: The leap second: its history and possible future, Metrologia 38(6), 509 (2001)CrossRefGoogle Scholar
  14. 2.14
    D. Finkleman, J.H. Seago, P.K. Seidelmann: The debate over UTC and leap seconds, Proc. AIAA Guid. Navig. Control Conf. Toronto (AIAA, Reston 2010), AAIA 2010–8391Google Scholar
  15. 2.15
    P.K. Seidelmann, J.H. Seago: Time scales, their users, and leap seconds, Metrologia 48(4), S186–S194 (2011)CrossRefGoogle Scholar
  16. 2.16
    W. Lewandowski, E.F. Arias: GNSS Times and UTC, Metrologia 48(4), S219–S224 (2011)CrossRefGoogle Scholar
  17. 2.17
    K.R. Brown Jr.: The theory of the GPS composite clock, Proc. ION GPS 91, Albuquerque (ION, Virginia 1991) pp. 223–241Google Scholar
  18. 2.18
    A.L. Satin, W.A. Feess, H.F. Fliegel, C.H. Yinger: GPS composite clock software performance, Proc. 22rd Annu. PTTI Meet. Vienna (JPL, Pasadena 1991) pp. 529–546Google Scholar
  19. 2.19
    H.S. Mobbs, S.T. Hutsell: Refining monitor station weighting in the GPS composite clock, Proc. 29th Annu. PTTI Meet. Long Beach (JPL, Pasadena 1997)Google Scholar
  20. 2.20
    Navstar GPS Space Segment/Navigation User Segment Interfaces, Interface Specification, IS-GPS-200H, 24 Sep. 2013 (Global Positioning Systems Directorate, Los Angeles Air Force Base, El Segundo 2013)Google Scholar
  21. 2.21
    T.E. Parker, D. Matsakis: Time and frequency dissemination: Advances in GPS transfer techniques, GPS World 15(11), 32–38 (2004)Google Scholar
  22. 2.22
    Global Navigation Satellite System GLONASS – Interface Control Document, v5.1, (Russian Institute of Space Device Engineering, Moscow 2008)Google Scholar
  23. 2.23
    P. Zhang, C. Xu, C. Hu, Y. Chen, J. Zhao: Time scales and time transformations among satellite navigation systems, Proc. CSNC 2012, Guanzhou, Vol. II, ed. by J. Sun, J. Liu, Y. Yang, S. Fan (Springer, Berlin 2012) pp. 491–502Google Scholar
  24. 2.24
    A.V. Druzhin, V. Palchikov: Current state and perspectives of UTC(SU) broadcast by GLONASS, 9th Meet. Int. Comm. GNSS (ICG), Prague (UNOOSA, Vienna 2014) pp. 1–9Google Scholar
  25. 2.25
    R. Zanello, M. Mascarello, L. Galleani, P. Tavella, E. Detoma, A. Bellotti: The Galileo precise timing facility, Proc. IEEE FCS 2007 21st EFTF, Geneva (2007) pp. 458–462Google Scholar
  26. 2.26
    X. Stehlin, Q. Wang, F. Jeanneret, P. Rochat, E. Detoma: Galileo system time physical generation, Proc. 38th Annu. PTTI Meet. Washington, DC (JPL, Pasadena 2006) pp. 395–406Google Scholar
  27. 2.27
    C. Han, Y. Yang, Z. Cai: BeiDou navigation satellite system and its time scales, Metrologia 48(4), S213–S218 (2011)CrossRefGoogle Scholar
  28. 2.28
    R. Hlaváč, M. Lösch, F. Luongo, J. Hahn: Timing infrastructure for Galileo system, Proc. 20th EFTF, Braunschweig (2006) pp. 391–398Google Scholar
  29. 2.29
    BeiDou Navigation Satellite System Signal In Space Interface Control Document – Open Service Signal, Version 2.0 (China Satellite Navigation Office, 2013)Google Scholar
  30. 2.30
    W. Torge, J. Müller: Geodesy (Walter de Gruyter, Berlin 2012)CrossRefGoogle Scholar
  31. 2.31
    K.M. Borkowski: Accurate algorithms to transform geocentric to geodetic coordinates, Bull. Géodésique 63(1), 50–56 (1989)CrossRefGoogle Scholar
  32. 2.32
    D.D. McCarthy: IERS Conventions (1996), IERS Technical Note No. 21 (Observatoire de Paris, Paris 1996)Google Scholar
  33. 2.33
    T. Fukushima: Transformation from Cartesian to geodetic coordinates accelerated by Halley’s method, J. Geod. 79(12), 689–693 (2006)CrossRefGoogle Scholar
  34. 2.34
    H. Moritz: Geodetic reference system 1980, Bull. Géodésique 54(3), 395–405 (1980)CrossRefGoogle Scholar
  35. 2.35
    E. Groten: Fundamental arameters and current (2004) best estimates of the parameters of common relevance to astronomy, geodesy, and geodynamics, J. Geod. 77, 724–731 (2004)CrossRefGoogle Scholar
  36. 2.36
    J. Kovalevsky, I.I. Mueller: Comments on conventional terrestrial and quasi-inertial reference systems. In: Reference Coordinate Systems for Earth Dynamics, ed. by E.M. Gaposchkin, B. Kołczek (D. Reidel, Dordrecht 1981) pp. 375–384CrossRefGoogle Scholar
  37. 2.37
    H. Moritz, I.I. Mueller: Earth Rotation: Theory and Observation (Unger, New York 1987)Google Scholar
  38. 2.38
    Geodetic Glossary (National Geodetic Survey, National Oceanic and Atmospheric Administration, Rockville 1986)Google Scholar
  39. 2.39
    G. Seeber: Satellite Geodesy: Foundations, Methods, and Applications (Walter de Gruyter, Berlin 2003)CrossRefGoogle Scholar
  40. 2.40
    H. Schuh, D. Behrend: VLBI: A fascinating technique for geodesy and astrometry, J. Geodyn. 61, 68–80 (2012)CrossRefGoogle Scholar
  41. 2.41
    R.A. Snay, T. Soler: Continuously operating reference station (CORS): History, applications, and future enhancements, J. Surv. Eng. 134(4), 95–104 (2008)CrossRefGoogle Scholar
  42. 2.42
    B. Hofmann-Wellenhof, H. Moritz: Physical Geodesy (Springer, Berlin 2005)Google Scholar
  43. 2.43
    N.K. Pavlis, S.A. Holmes, S.C. Kenyon, J.K. Factor: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res. Solid Earth 117(B4), 2156–2202 (2012)CrossRefGoogle Scholar
  44. 2.44
    Standardization Agreement Navstar Global Positioning System (GPS) System Characteristics, STANAG 4294, 1st edn. (North Atlantic Treaty Organization, 1993)Google Scholar
  45. 2.45
    S. Malys, J.H. Seago, N.K. Pavlis, P.K. Seidelmann, G.H. Kaplan: Why the Greenwich meridian moved, J. Geod. 89(12), 1263–1272 (2015)CrossRefGoogle Scholar
  46. 2.46
    Z. Altamimi, X. Collilieux, L. Métivier: ITRF2008: An improved solution of the International Terrestrial Reference Frame, J. Geod. 85(8), 457–473 (2011)CrossRefGoogle Scholar
  47. 2.47
    M.R. Pearlman, J.J. Degnan, J.M. Bosworth: The international laser ranging service, Adv. Space Res. 30(2), 135–143 (2002)CrossRefGoogle Scholar
  48. 2.48
    L. Combrinck: Satellite laser ranging. In: Sciences of Geodesy, Vol. I, ed. by G. Xu (Springer, Berlin 2010) pp. 301–338CrossRefGoogle Scholar
  49. 2.49
    M. Meindl, G. Beutler, D. Thaller, R. Dach, A. Jäggi: Geocenter coordinates estimated from GNSS data as viewed by perturbation theory, Adv. Space Res. 51(7), 1047–1064 (2013)CrossRefGoogle Scholar
  50. 2.50
    S.P. Kuzin, S.K. Tatevian, S.G. Valeev, V.A. Fashutdinova: Studies of the geocenter motion using 16-years DORIS data, Adv. Space Res. 46(10), 1292–1298 (2010)CrossRefGoogle Scholar
  51. 2.51
    Z. Altamimi, C. Boucher, P. Sillard: New trends for the realization of the international terrestrial reference system, Adv. Space Res. 30(2), 175–184 (2002)CrossRefGoogle Scholar
  52. 2.52
    Z. Altamimi, P. Sillard, C. Boucher: ITRF2000: A new release of the International Terrestrial Reference Frame for Earth science applications, J. Geophys. Res. 107(B10), 2214 (2002)CrossRefGoogle Scholar
  53. 2.53
    D.F. Argus, R.G. Gordon: No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett. 18(11), 2039–2042 (1991)CrossRefGoogle Scholar
  54. 2.54
    C. DeMets, R.G. Gordon, D.F. Argus, S. Stein: Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett. 21(20), 2191–2194 (1994)CrossRefGoogle Scholar
  55. 2.55
    Z. Altamimi, L. Métivier, X. Collilieux: ITRF2008 plate motion model, J. Geophys. Res. 117(B07402), 1–14 (2012)Google Scholar
  56. 2.56
    Department of Defense World Geodetic System 1984 (WGS84): Its definition and relationships with local geodetic systems, Publication NIMA TR8350.2, 3rd edn., amendm. 1 (National Imagery and Mapping Agency, 2000)Google Scholar
  57. 2.57
    Supplement to Department of Defense World Geodetic System 1984 Technical Report, Part I, DMA TR 8350.2-A (Defense Mapping Agency, Washington 1987)Google Scholar
  58. 2.58
    M.J. Merrigan, E.R. Swift, R.F. Wong, J.T. Saffel: A refinement to the World Geodetic System 1984 reference frame, Proc. ION GPS 2002, Portland (IOM, Virginia 2002) pp. 1519–1529Google Scholar
  59. 2.59
    R.F. Wong, C.M. Rollins, C.F. Minter: Recent Updates to the WGS 84 Reference Frame, Proc. ION GNSS 2012, Nashv. (ION, Virginia 2012) pp. 1164–1172Google Scholar
  60. 2.60
    S.G. Revnivykh: GLONASS status and progress, 47th CGSIC Meet. Fort Worth (2007)Google Scholar
  61. 2.61
    Parametry Zemli 1990 (PZ-90.11) Reference document (Military Topographic Department of the General Staff of Armed Forces of the Russian Federation, Moscow 2014)Google Scholar
  62. 2.62
    A.N. Zueva, E.V. Novikov, D.I. Pleshakov, I.V. Gusev: System of geodetic parameters ‘‘Parametry Zemli 1990’’ PZ-90.11, 9th Meet. Int. Comm. GNSS (ICG), Work. Group D, Prague (UNOOSA, Vienna 2014)Google Scholar
  63. 2.63
    Y. Yang: Chinese Geodetic Coordinate System 2000, Chin. Sci. Bull. 54(15), 2714–2721 (2009)Google Scholar
  64. 2.64
    G. Gendt, Z. Altamimi, R. Dach, W. Söhne, T. Springer, GGSP Prototype Team: GGSP: Realisation and maintenance of the Galileo terrestrial reference frame, Adv. Space Res. 47(2), 174–185 (2011)CrossRefGoogle Scholar
  65. 2.65
    D. D. McCarthy: IERS Conventions (1992), IERS Technical Note No. 13 (Observatoire de Paris, Paris 1992) Google Scholar
  66. 2.66
    International Terrestrial Reference Frame: ITRF Transformation Parameters, ITRF Website
  67. 2.67
    T. Soler, R.A. Snay: Transforming positions and velocities between the International Terrestrial Reference Frame of 2000 and North American Datum of 1983, J. Surv. Eng. 130(2), 49–55 (2004)CrossRefGoogle Scholar
  68. 2.68
    IAG: IAG resolutions adopted at the XXth IUGG General Assembly in Vienna, Bulletin Géodésique 66(2), 132–133 (1992) Google Scholar
  69. 2.69
    M. Poutanen, M. Vermeer, J. Mäkinen: The permanent tide in GPS positioning, J. Geod. 70(8), 499–504 (1996)CrossRefGoogle Scholar
  70. 2.70
    P.M. Mathews, B.A. Buffett, I.I. Shapiro: Love numbers for a rotating spheroidal Earth: New definitions and numerical values, Geophys. Res. Lett. 22(5), 579–582 (1995)CrossRefGoogle Scholar
  71. 2.71
    J.M. Wahr: Deformation induced by polar motion, J. Geophys. Res. Solid Earth 90(B11), 9363–9368 (1985)CrossRefGoogle Scholar
  72. 2.72
    P.M. Mathews, B.A. Buffett, I.I. Shapiro: Love numbers for diurnal tides: Relation to wobble admittances and resonance expansions, J. Geophys. Res. 100(B6), 9935–9948 (1995)CrossRefGoogle Scholar
  73. 2.73
    W.E. Farrell: Deformation of the Earth by surface loads, Rev. Geophys. 10(3), 761–797 (1972)CrossRefGoogle Scholar
  74. 2.74
    M. Soffel, R. Langhans: Space-Time Reference Systems (Springer, Berlin 2012)Google Scholar
  75. 2.75
    V. Dehant, P.M. Mathews: Precession, Nutation and Wobble of the Earth (Cambridge Univ. Press, Cambridge 2015)CrossRefGoogle Scholar
  76. 2.76
    E.W. Woolard: Theory of the Rotation of the Earth Around its Center of Mass, Astronomical Papers Vol. XV Part 1 (U.S. Naval Observatory, Washington, D.C. 1953)Google Scholar
  77. 2.77
    J.H. Lieske, T. Lederle, W. Fricke, B. Morando: Expressions for the precession quantities based upon the IAU/1976/system of astronomical constants, Astron. Astrophys. 58, 1–16 (1977)Google Scholar
  78. 2.78
    N. Capitaine, P.T. Wallace, J. Chapront: Expressions for IAU 2000 precession quantities, Astron. & Astrophys. 412(2), 567–586 (2003)CrossRefGoogle Scholar
  79. 2.79
    I.I. Mueller: Spherical and Practical Astronomy as Applied to Geodesy (F. Ungar, New York 1969)Google Scholar
  80. 2.80
    H. Goldstein, C.P. Poole, J.L. Safko: Classical Mechanics (Addison Wesley, San Francisco 2000)Google Scholar
  81. 2.81
    N. Capitaine, P.T. Wallace, J. Chapront: Improvement of the IAU 2000 precession model, Astron. & Astrophys. 432(1), 355–367 (2005)CrossRefGoogle Scholar
  82. 2.82
    J.P. Vinti: Orbital and Celestial Mechanics (AIAA, Reston 1998)CrossRefGoogle Scholar
  83. 2.83
    H. Kinoshita: Theory of the rotation of the rigid Earth, Celest. Mech. 15(3), 277–326 (1977)CrossRefGoogle Scholar
  84. 2.84
    International Earth Rotation and Reference Systems Service: IERS Conventions 2010, electronic supplement
  85. 2.85
    N. Capitaine, B. Guinot, J. Souchay: A non-rotating origin on the instantaneous equator: Definition, properties and use, Celest. Mech. 39(3), 283–307 (1986)CrossRefGoogle Scholar
  86. 2.86
    N. Capitaine: The celestial pole coordinates, Celest. Mech. Dyn. Astron. 48(2), 127–143 (1990)Google Scholar
  87. 2.87
    D.D. McCarthy, G. Petit: IERS Conventions (2003), IERS Technical Note No. 36 (Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt 2004)Google Scholar
  88. 2.88
    P.M. Mathews, P. Bretagnon: Polar motions equivalent to high frequency nutations for a nonrigid Earth with anelastic mantle, Astron. & Astrophys. 400(3), 1113–1128 (2003)CrossRefGoogle Scholar
  89. 2.89
    P. Mathews, T. Herring: On the reference pole for Earth orientation and UT1, Proc. IAU Colloq. 180: Towards Models Constants Sub-Microarcsecond Astrom. Washington DC, ed. by K.J. Johnston, D.D. McCarthy, B.J. Luzum, G.H. Kaplan (US Naval Observatory, Washington, DC 2000) pp. 164–170Google Scholar
  90. 2.90
    IAU SOFA Board: IAU SOFA Software Collection (International Astronomical Union), IAU SOFA Center
  91. 2.91
    D.A. Vallado, J.H. Seago, P.K. Seidelmann: Implementation issues surrounding the new IAU reference systems for astrodynamics, Proc. 16th AAS/AIAA Space Flight Mech. Conf. Tampa (AAS, San Diego 2006), pp. 1–22, AAS 06-134Google Scholar
  92. 2.92
    V. Coppola, J.H. Seago, D.A. Vallado: The IAU 2000A and IAU 2006 precession-nutation theories and their implementation, Proc. 19th AAS/AIAA Space Flight Mech. Meet. Savannah (AAS, San Diego 2009), pp. 1–20, AAS 09-159Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Earth SciencesOhio State UniversityColumbusUSA
  2. 2.German Aerospace Center (DLR)WesslingGermany

Personalised recommendations