Zusammenfassung

Multipath is the phenomenon whereby the signal from a satellite arrives at the receiver via multiple paths due to reflection and diffraction. These nondirect-path signals distort the received signal and cause errors in code and phase measurements. Differential techniques do not eliminate multipath and thus multipath is an important error source in high precision applications. The physical surroundings around the receiver’s antenna dictate the multipath environment and thus cause significant differences for land, marine, airborne, and spaceborne users.

This chapter describes the multipath environment and presents models describing the impact of multipath on code and phase measurements. The influence of the type and rate of the broadcast code as well as the receiver architecture will be highlighted. Mitigation techniques based on receiver design will also be described along with the impact of receiver dynamics. Finally, a technique to measure multipath is described and its usage in evaluating static environments is discussed.

The goal of this chapter is to provide the reader with the tools to assess the impact of multipath on both the code and phase and to understand the performance improvements and limitations associated with various multipath mitigation techniques.

Keywords

Global Position System Global Navigation Satellite System Global Navigation Satellite System Elevation Angle Ionospheric Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
BOC

binary offset carrier

BPSK

binary phase-shift keying

CBOC

composite binary offset carrier

CMC

code-minus-carrier

CORS

continuously operating reference station

CPU

central processing unit

DGNSS

differential GNSS

DLL

delay lock loop

GBAS

ground-based augmentation system

GNSS

global navigation satellite system

GPS

Global Positioning System

LOS

line-of-sight

PRN

pseudo-random noise

RF

radio frequency

SNR

signal-to-noise ratio

Notes

Acknowledgements

The author would like to thank his current and former colleagues at Ohio University: Dr. Michael DiBenedetto, Dr. Sai Kalyanaraman (now with Rockwell Collins), and Mr. Joseph Kelly (now with mCube), along with Dr. Gary McGraw of Rockwell Collins, for their collaboration on various research projects that were drawn upon for material for this chapter. The author would also like to thank Dr. Dmitry Tatarnikov of Topcon Positioning Systems for the provision of the carrier-phase multipath data. Finally, the author would like to thank the US FAA, NASA, and DoD, along with Honeywell and Rockwell Collins for their support.

References

  1. 15.1
    G. Hein, A. Teuber, H. Thierfelder, A. Wolfe: GNSS indoors: Fighting the fading – Part 2, Inside GNSS 3(4), 47–53 (2008)Google Scholar
  2. 15.2
    K. Kaiser: Plane wave shielding. In: Electromagnetic Compatibility Handbook, (CRC, Boca Raton 2004) p. 21-38Google Scholar
  3. 15.3
    A. Kavak, G. Xu, W. Vogel: GPS multipath fade measurements to determine L-band ground reflectivity properties, Proc. 20th NASA Propag. Exp. Meet. (NAPEX 20), Fairbanks (Jet Propulsion Laboratory, Pasadena 1996) pp. 257–263Google Scholar
  4. 15.4
    P. Beckmann, A. Spizzichino: The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon/Macmillan, New York 1963)Google Scholar
  5. 15.5
    A. Ghasemi, A. Abedi, F. Ghasemi: Propagation Engineering in Wireless Communications (Springer, New York 2012)CrossRefGoogle Scholar
  6. 15.6
    D. Barton: Radar Equations for Modern Radar (Artech House, Boston 2012)Google Scholar
  7. 15.7
    R. van Nee: Spread-spectrum code and carrier synchronization errors caused by multipath and interference, IEEE Trans. Aerosp. Electron. Syst. 29(4), 1359–1365 (1993)CrossRefGoogle Scholar
  8. 15.8
    S. Kalyanaraman, M. Braasch, J. Kelly: Code tracking architecture influence on GPS carrier phase, IEEE Trans. Aerosp. Electron. Syst. 42(2), 548–561 (2006)CrossRefGoogle Scholar
  9. 15.9
    M. Irsigler, J. Avila-Rodriguez, G. Hein: Criteria for GNSS multipath performance assessment, Proc. ION GNSS 2005, Long Beach (ION, Virginia 2006) pp. 2166–2177Google Scholar
  10. 15.10
    M. Braasch: Autocorrelation sidelobe considerations in the characterization of multipath errors, IEEE Trans. Aerosp. Electron. Syst. 33(1), 290–295 (1997)CrossRefGoogle Scholar
  11. 15.11
    G. Brodin: GNSS code and carrier tracking in the presence of multipath, Proc. ION GPS 1996, Kansas City (ION, Virginia 1996) pp. 1389–1398Google Scholar
  12. 15.12
    J. Ray: Mitigation of GPS Code and Carrier Phase Multipath Effects Using a Multi-Antenna System, Ph.D. Thesis (Univ. Calgary, Calgary 2000)Google Scholar
  13. 15.13
    J. Kelly, M. Braasch, M. DiBenedetto: Characterization of the effects of high multipath phase rates in GPS, GPS Solutions 7(1), 5–15 (2003)CrossRefGoogle Scholar
  14. 15.14
    F. Bletzacker: Reduction of multipath contamination in a geodetic GPS receiver, Proc. 1st Int. Symp. Precise Position. Glob. Position. Syst. (US Department of Commerce, National Oceanic and Atmospheric Administration, Rockville 1985) pp. 413–422Google Scholar
  15. 15.15
    J. Tranquilla, J. Carr, H. Al-Rizzo: Analysis of a choke ring groundplane for multipath control in global positioning system (GPS) applications, IEEE Trans. Antennas Propag. 42(7), 905–911 (1994)CrossRefGoogle Scholar
  16. 15.16
    W. Kunysz: A novel GPS survey antenna, Proc. ION NTM 2000, Anaheim (ION, Virginia 2000) pp. 698–705Google Scholar
  17. 15.17
    W. Kunysz: High performance GPS pinwheel antenna, Proc. ION GPS 2000, Salt Lake City (ION, Virginia 2000) pp. 2506–2511Google Scholar
  18. 15.18
    A. Lopez: GPS Antenna Systems, US Patent (Application) 5534882 (1996)Google Scholar
  19. 15.19
    M. Braasch: Optimum antenna design for DGPS ground reference stations, Proc. ION GPS 1994, Salt Lake City (ION, Virginia 1994) pp. 1291–1297Google Scholar
  20. 15.20
    F. van Graas, D. Diggle, M. Uijt de Haag, T. Skidmore, M. DiBenedetto, V. Wullschleger, R. Velez: Ohio Univ./FAA flight test demonstration of local area augmentation system (LAAS), Navigation 45(2), 129–136 (1998)CrossRefGoogle Scholar
  21. 15.21
    D.B. Thornberg, D.S. Thornberg, M. DiBenedetto, M. Braasch, F. van Graas, C. Bartone: LAAS integrated multipath-limiting antenna, Navigation 50(2), 117–130 (2003)CrossRefGoogle Scholar
  22. 15.22
    A. Lopez: GPS ground station antenna for local area augmentation system, LAAS, Proc. ION ITM 2000, Anaheim (ION, Virginia 2000) pp. 738–742Google Scholar
  23. 15.23
    A. Lopez: LAAS/GBAS ground reference antenna with enhanced mitigation of ground multipath, Proc. ION NTM 2008, San Diego (ION, Virginia 2008) pp. 389–393Google Scholar
  24. 15.24
    L. Garin, F. van Diggelen, J. Rousseau: Strobe and edge correlator multipath mitigation for code, Proc. ION GPS 1996, Kansas City (ION, Virginia 1996) pp. 657–664Google Scholar
  25. 15.25
    L. Garin, J. Rousseau: Enhanced strobe correlator multipath rejection for code and carrier, Proc. ION GPS 1997, Kansas City (ION, Virginia 1997) pp. 559–568Google Scholar
  26. 15.26
    R. Hatch, R. Keegan, T. Stansell: Leica’s code and phase multipath mitigation techniques, Proc. ION NTM 1997, Santa Monica (ION, Virginia 1997) pp. 217–225Google Scholar
  27. 15.27
    L. Weill: GPS multipath mitigation by means of correlator reference waveform design, Proc. ION NTM 1997, Santa Monica (ION, Virginia 1997) pp. 197–206Google Scholar
  28. 15.28
    L. Weill: Application of superresolution concepts to the GPS multipath mitigation problem, Proc. ION NTM 1998, Long Beach (ION, Virginia 1998) pp. 673–682Google Scholar
  29. 15.29
    G. McGraw, M. Braasch: GNSS multipath mitigation using gated and high resolution correlator concepts, Proc. ION NTM 1999, Santa Diego (ION, Virginia 1999) pp. 333–342Google Scholar
  30. 15.30
    M. Irsigler, B. Eissfeller: Comparison of multipath mitigation techniques with consideration of future signal structures, Proc. ION GPS 2003, Portland (ION, Virginia 2003) pp. 2584–2592Google Scholar
  31. 15.31
    J. Jones, P. Fenton, B. Smith: Theory and Performance of the Pulse Aperture Correlator (NovAtel, Calgary 2004), http://www.novatel.com/assets/Documents/Papers/PAC.pdf Google Scholar
  32. 15.32
    T. Pany, M. Irsigler, B. Eissfeller: S-curve shaping: A new method for optimum discriminator based code multipath mitigation, Proc. ION GNSS 2005, Long Beach (ION, Virginia 2005) pp. 2139–2154Google Scholar
  33. 15.33
    M. Paonni, J. Avila-Rodriguez, T. Pany, G. Hein, B. Eissfeller: Looking for an optimum S-curve shaping of the different MBOC implementations, Navigation 55(4), 255–266 (2008)CrossRefGoogle Scholar
  34. 15.34
    Y. Bock: Continuous monitoring of crustal deformation, GPS World 2(6), 40–47 (2008)Google Scholar
  35. 15.35
    K. Choi, A. Bilich, K. Larson, P. Axelrad: Modified sidereal filtering: Implications for high-rate GPS positioning, Geophys. Res. Lett. 31(L22608), 1–4 (2004)Google Scholar
  36. 15.36
    Z. Zhu, S. Gunawardena, M. Uijt de Haag, F. van Graas: Satellite anomaly and interference detection using the GPS anomalous event monitor, Proc. ION AM 2007, Cambridge (ION, Virginia 2007) pp. 389–396Google Scholar
  37. 15.37
    Z. Zhu, S. Gunawardena, M. Uijt de Haag, F. van Graas: Advanced GPS performance monitor, Proc. ION GNSS 2007, Fort Worth (ION, Virginia 2007) pp. 415–423Google Scholar
  38. 15.38
    M. Irsigler: Multipath Propagation, Mitigation and Monitoring in the Light of Galileo and the Modernized GPS, Ph.D. Thesis (Universität der Bundeswehr, Munich 2008)Google Scholar
  39. 15.39
    Z. Zhu, S. Gunawardena, M. Uijt de Haag, F. van Graas, M. Braasch: GNSS watch dog: A GPS anomalous event monitor, Inside GNSS 3(7), 18–28 (2008)Google Scholar
  40. 15.40
    Final User Field Test Report for the NAVSTAR Global Positioning System Phase I, Major Field Test Objective No. 17: Environmental Effects, Multipath Rejection, Rep. GPS-GD-025-C-US-7008 (General Dynamics Electronics Division, San Diego 1979)Google Scholar
  41. 15.41
    A. Evans: Comparison of GPS pseudorange and biased doppler range measurements to demonstrate signal multipath effects, Proc. Int. Telemetering Conf., Las Vegas (1986) pp. 795–801Google Scholar
  42. 15.42
    M. Braasch: Isolation of GPS multipath and receiver tracking errors, Navigation 41(4), 415–434 (1994)CrossRefGoogle Scholar
  43. 15.43
    R. Langley: GPS receivers and the observables. In: GPS for Geodesy, Vol. 2, ed. by P. Teunissen, A. Kleusberg (Springer, Berlin 1998) pp. 167–171Google Scholar
  44. 15.44
    P. Axelrad, C. Comp, P. MacDoran: SNR-based multipath error correction for GPS differential phase, IEEE Trans. Aerosp. Electron. Syst. 32(2), 650–660 (1996)CrossRefGoogle Scholar
  45. 15.45
    D. Tatarnikov, A. Astakhov: Approaching millimeter accuracy of GNSS positioning in real time with large impedance ground plane antennas, Proc. ION NTM 2014, Santa Diego (ION, Virginia 2014) pp. 844–848Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Electrical Engineering & Computer ScienceOhio UniversityAthensUSA

Personalised recommendations