Regional Systems

  • Satoshi KogureEmail author
  • A.S. Ganeshan
  • Oliver Montenbruck
Part of the Springer Handbooks book series (SHB)


Other than global positioning system (GPS ), Russian global navigation satellite system (GLONASS ), BeiDou, and Galileo, the regional navigation satellite systems (RNSS ) aim to provide a regional service using a constellation of satellites in geostationary Earth orbits (GEO ) and inclined geosynchronous orbits (IGSO ). Two regional systems implemented in Asia will be introduced in this chapter.

The first one is the Japanese Quasi-Zenith Satellite System (QZSS ), which was originally planned as an augmentation system to enhance GPS capability and performance in the area surrounding Japan. The other is the Indian Regional Navigation Satellite System (IRNSS , also known as NavIC for Navigation with Indian Constellation), which can provide an independent positioning, navigation, and timing (PNT ) service over India and surrounding areas.

In this chapter, the concept of regional navigation satellite systems is first described. The combination of satellites in GEO and IGSO is a common idea to realize such a regional service platform with a low number of satellites. The orbital characteristics and geometry of the proposed RNSS constellations are explained before each RNSS is introduced in detail. Secondly, the detailed characteristics of both systems are described in the following sections. The system architecture, service provision including navigation signal properties and service performance to be provided, as well as the deployment plan or schedule are mentioned for each system. Additionally, initial demonstration results are presented.


Global Position System Global Navigation Satellite System Global Navigation Satellite System Precise Orbit Determination Restricted Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Allan deviation


attitude and orbit control system


binary offset carrier


binary phase-shift keying


code division multiple access


civil navigation message


continuously operating reference station


cyclic redundancy check


code shift keying


Deutsches Zentrum für Luft- und Raumfahrt


dilution of precision


extended Kalman filter


forward error correction


geostationary Earth orbit


Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)


global navigation satellite system


Global Positioning System


GPS Time


interface control document


International GNSS Service


inclined geo-synchronous orbit


Indian Regional Navigation Satellite System


International Telecommunication Union


Japan Aerospace Exploration Agency


legacy navigation message


master control station


medium Earth orbit


Multi-Function Satellite Augmentation System


monitoring station


notice advisory to QZSS users


National Aeronautics and Space Administration


one-way carrier-phase technique


position dilution of precision


positioning, navigation and timing


precise orbit determination


precise point positioning


pseudo-random noise


Quasi-Zenith Satellite System


right ascension of ascending node


rubidium atomic frequency standard


radio determination satellite service


radio frequency


root mean square


regional navigation satellite system


Radio Technical Commission for Maritime Services


satellite-based augmentation system


signal-in-space range error


satellite laser ranging


standard positioning service


International Atomic Time


telemetry (word)


telemetry, tracking, and commanding


two-way satellite time and frequency transfer


traveling wave tube amplifier


user equivalent range error


United States Naval Observatory


Coordinated Universal Time


World Geodetic System


  1. 11.1
    C. Carnebianca: Regional to global satellite based navigation systems, IEEE PLANS’88, Orlando (1988) pp. 25–33Google Scholar
  2. 11.2
    J.R. Wertz, W.J. Larson: Space Mission Analysis and Design, 3rd edn. (Microcosm, Torrance 1999) pp. 143–144Google Scholar
  3. 11.3
    R.D. Briskman: Radio Determination Satellite Service, Proc. IEEE 78(7), 1096–1106 (1990)CrossRefGoogle Scholar
  4. 11.4
    R.D. Briskman, R.J. Prevaux: S-DARS broadcast from inclined, elliptical orbits, Acta Astronaut. 54(7), 503–518 (2004)CrossRefGoogle Scholar
  5. 11.5
    M. Tanaka, K. Kimura, E. Morikawa, A. Miura, S. Kawase, S. Yamamoto, H. Wakana: Application technique of figure-8 satellites system, Technical Report SAT 99(45), 55–62 (Institute of Electronics, Information and Communication Engineers) in JapaneseGoogle Scholar
  6. 11.6
    H.D. Takahashi: Japanese regional navigation satellite system ‘‘The JRANS Concept’’, J. Glob. Position. Syst. 3(1/2), 259–264 (2004)CrossRefGoogle Scholar
  7. 11.7
    S. Kogure, M. Kishimoto, M. Sawabe: Future expansion from QZSS to regional satellite navigation system, ION NTM, San Diego (ION, Virginia 2007) pp. 455–460Google Scholar
  8. 11.8
    J. Spilker: Satellite constellation and geometric dilution of precision. In: Global Positioning System: Theory and Applications, Vol. 1, ed. by B.W. Parkinson, J.J. Spilker (AIAA, Washington 1996) pp. 177–208CrossRefGoogle Scholar
  9. 11.9
    L. Ma, S. Li: Mathematical aspects for RNSS constellation with IGSO satellites, Earth Sci. Res. 3(2), 66–71 (2014)CrossRefGoogle Scholar
  10. 11.10
    I. Kawano, M. Mokuno, S. Kogure, M. Kishimoto: Japanese experimental GPS augmentation using Quasi-Zenith Satellite System (QZSS), ION GNSS, Long Beach (ION, Virginia 2004) pp. 175–181Google Scholar
  11. 11.11
    Y. Murai: Project overview of the Quasi-Zenith Satellite System, Proc. ION GNSS\(+\), Tampa (ION, Virginia 2015) pp. 1291–1332Google Scholar
  12. 11.12
    A. Matsumoto: Status update on the Quasi-Zenith Satellite System (QZSS), 9th Meet. Int. Comm. GNSS (ICG), Prague (UNOOSA, Vienna 2014) pp. 1–18Google Scholar
  13. 11.13
    Service overview on the Quazi-Zenith Satellite System (QZSS) web site,
  14. 11.14
    Japan Aerospace Exploration Agency: Quasi-Zenith Satellite System navigation service interface specification for QZSS, IS-QZSS, V1.6 (JAXA, 2014)Google Scholar
  15. 11.15
    S. Kogure, I. Kawano: GPS augmentation and complement using Quasi-Zenith Satellite System (QZSS), AIAA 2003-2416, Proc. 21st AIAA Int. Commun. Satell. Syst. Conf. Exhib., Yokohama (AIAA, Reston 2003) pp. 1–10Google Scholar
  16. 11.16
    K. Kimura, M. Tanaka: Required velocity increment for formation keeping of inclined geosynchronous constellations, Proc. 51st Int. Astronaut. Cong., Rio de Janeiro (IAF, Paris 2000)Google Scholar
  17. 11.17
    Y. Murai: Project overview Quasi-Zenith Satellite System, Symp. Commer. Appl. Global Navig. Satell. Syst., Vienna (UNOOSA, Vienna 2014) pp. 1–33Google Scholar
  18. 11.18
    M. Saito, J. Takiguchi, T. Okamoto: Establishment of regional navigation satellite system utilizing quasi-zenith satellite system, Mitsubishi Electr. Adv. Mag. 147, 1–6 (2014)Google Scholar
  19. 11.19
    Quasi-Zenith Satellite System Interface Specification – Satellite Positioning, Navigation and Timing Service, IS-QZSS-PNT-001, Draft 12 July 2016 (Cabinet Office, 2016)Google Scholar
  20. 11.20
    Quasi-Zenith Satellite System Interface Specification – Centimeter Level Augmentation Service, IS-QZSSL6-001, Draft 12 July 2016 (Cabinet Office, 2016)Google Scholar
  21. 11.21
    Quasi-Zenith Satellite System Interface Specification – Positioning Technology Verification Service, IS-QZSS-TV-001, Draft 12 July 2016 (Cabinet Office, 2016)Google Scholar
  22. 11.22
    Navstar GPS Space Segment / Navigation User Segment Interfaces, Interface Specification, IS-GPS-200H, 24 Sep. 2013 (Global Positioning Systems Directorate, 2013)Google Scholar
  23. 11.23
    Navstar GPS Space Segment / User Segment L5 Interfaces, Interface Specification, IS-GPS-705D, 24 Sep. 2013 (Global Positioning Systems Directorate, 2013)Google Scholar
  24. 11.24
    Navstar GPS Space Segment / User Segment L1C Interfaces, Interface Specification, IS-GPS-800D, 24 Sep. 2013 (Global Positioning Systems Directorate, 2013)Google Scholar
  25. 11.25
    L1 C/A PRN Code Assignments; US Air Force, Los Angeles Air Force Base, 6 Jan. 2016.
  26. 11.26
    J.W. Betz: Binary offset carrier modulations for radionavigation, Navigation 48(4), 227–246 (2001)CrossRefGoogle Scholar
  27. 11.27
    J.W. Betz, M.A. Blanco, Ch.R. Cahn, Ph.A. Dafesh, Ch.J. Hegarty, K.W. Hudnut, V. Kasemsri, R. Keegan, K. Kovach, L.S. Lenahan, H.H. Ma, J.J. Rushanan, D. Sklar, T.A. Stansell, C.C. Wang, S.K. Yi: Description of the L1C signal, ION GNSS, Fort Worth (ION, Virginia 2006) pp. 2080–2209Google Scholar
  28. 11.28
    H. Maeda: System Research on The Quasi-Zenith Satellites System (in Japanese), Ph.D. Thesis (Tokyo University of Marine Science and Technology, Tokyo 2007)Google Scholar
  29. 11.29
    Technical Working Group Report to the U.S.-Japan GPS Plenary, (GPS-QZSS Technical Working Group, 18 Jan. 2012)
  30. 11.30
    T. Sakai, H. Yamada, S. Fukushima, K. Ito: Generation and evaluation of QZSS L1-SAIF ephemeris information, ION GNSS, Portland (ION, Virginia 2011) pp. 1277–1287Google Scholar
  31. 11.31
    S. Thoelert, S. Erker, J. Furthner, M. Meurer: Latest signal in space analysis of GPS IIF, COMPASS and QZSS, NAVITEC’2010, Noordwijk (ESA, Noordwijk 2010) pp. 1–8Google Scholar
  32. 11.32
    RTCA DO229D Change 1: Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment (RTCA, Feb. 2013)Google Scholar
  33. 11.33
    T. Sakai, S. Fukushima, N. Takeichi, K. Ito: Implementation of the QZSS L1-SAIF message generator, ION NTM, San Diego (ION, Virginia 2008) pp. 464–476Google Scholar
  34. 11.34
    T. Sakai, S. Fukushima, K. Ito: QZSS L1-SAIF Initial Experiment Results, ION ITM, San Diego (ION, Virginia 2011) pp. 1133–1142Google Scholar
  35. 11.35
    R. Iwama, H. Soga, K. Odagawa, Y. Masuda, T. Osawa, A. Ito, M. Matsumoto: Operation of sub-meter class augmentation system and demonstration experiments with Quasi-Zenith Satellite ‘‘MICHIBIKI’’, ION ITM, Newport Beach (ION, Virginia 2012) pp. 1295–1301Google Scholar
  36. 11.36
    T. Sakai, H. Yamada, K. Ito: Ranging quality of QZSS L1-SAIF signal, ION ITM, Newport Beach (ION, Virginia 2012) pp. 1255–1264Google Scholar
  37. 11.37
    S. Choy, K. Harima, Y. Li, M. Choudhury, C. Rizos, Y. Wakabayashi, S. Kogure: GPS precise point positioning with the Japanese Quasi-Zenith Satellite System LEX augmentation corrections, J. Navig. 68(4), 769–783 (2015)CrossRefGoogle Scholar
  38. 11.38
    T. Kasami: Weight distribution formula for some class of cyclic codes, Technical Report R285, 1–24 (University of Illinois, Urbana-Champaign 1966)Google Scholar
  39. 11.39
    S. Kogure: Evaluation of QZS-1 LEX signal, 7th Meet. Int. Comm. GNSS (ICG), Work. Group B, Bejing (UNOOSA, Vienna 2012) pp. 1–9Google Scholar
  40. 11.40
    S. Choy, K. Harima, Y. Li, Y. Wakabayashi, H. Tateshita, S. Kogure, C. Rizos: Real-time precise point positioning utilising the Japanese quasi-zenith satellite system (QZSS) LEX corrections, Proc. IGNSS Symp., Surfers Paradise (IGNSS Society, Tweed Heads 2013) pp. 1–15Google Scholar
  41. 11.41
    A. Garcia-Pena, D. Salos, O. Julien, L. Ries, T. Grelier: Analysis of the use of CSK for future GNSS Signals, ION GNSS, Nashville (ION, Virginia 2013) pp. 1461–1479Google Scholar
  42. 11.42
    Y. Hatanaka, Y. Kuroishi, H. Munekane, A. Wada: Development of a GPS Augmentation Technique, Proc. Int. Symp. GPS/GNSS – Toward New Era Position. Technol., Tokyo (GPS/GNSS Society Japan, 2008) pp. 1097–1103Google Scholar
  43. 11.43
    M. Saito, K. Asari: Centimeter-class Augmentation System (CMAS), Proc. ION GNSS, Nashville (ION, Virginia 2012) pp. 3354–3365Google Scholar
  44. 11.44
    RTCM Standard 10403.2: Differential GNSS Services, Version 3 with Ammendment 2, 7 Nov. 2013 (RTCM, Arlington, VA 2013)Google Scholar
  45. 11.45
    M. Schmitz: RTCM state space representation messages, status and plans, PPP-RTK Open Stand. Symp., Frankfurt (2012) pp. 1–31Google Scholar
  46. 11.46
    M. Caissy, L. Agrotis, G. Weber, M. Hernandez-Pajares, U. Hugentobler: Coming soon – The international GNSS real-time service, GPS World 23(6), 52 (2012)Google Scholar
  47. 11.47
    M. Saito, Y. Sato, M. Miya, M. Shima, Y. Omura, J. Takiguchi, K. Asari: Centimeter-class Augmentation System Utilizing Quasi-Zenith Satellite, ION GNSS, Portland (ION, Virginia 2011) pp. 1243–1253Google Scholar
  48. 11.48
    T. Suzuki, N. Kubo, T. Takasu: Evaluation of precise point positioning using MADOCA-LEX via Quasi-Zenith Satellite System, ION ITM, San Diego (ION, Virginia 2014) pp. 460–470Google Scholar
  49. 11.49
    M. Homma, S. Yoshimoto, N. Natori, Y. Tsutsumi: Engineering Test Satellite-8 for mobile communications and navigation experiment, Proc. 51st Int. Astronaut. Cong., Rio de Janeiro (IAF, Paris 2000)Google Scholar
  50. 11.50
    N. Inaba, A. Matsumoto, H. Hase, S. Kogure, M. Sawabe, K. Terada: Design concept of Quasi Zenith Satellite System, Acta Astronaut. 65(7), 1068–1075 (2009)CrossRefGoogle Scholar
  51. 11.51
    Y. Ishijima, N. Inaba, A. Matsumoto, K. Terada, H. Yonechi, H. Ebisutani, S. Ukava, T. Okamoto: Design and developement of the first quasi-zenith satellite attitude and orbit control system, IEEE Aerosp. Conf., Big Sky (2009) pp. 1–8, doi:10.1109/AERO.2009.4839537Google Scholar
  52. 11.52
    O. Montenbruck, R. Schmid, F. Mercier, P. Steigenberger, C. Noll, R. Fatkulin, S. Kogure, S. Ganeshan: GNSS satellite geometry and attitude models, Adv. Sp. Res. 56(6), 1015–1029 (2015)CrossRefGoogle Scholar
  53. 11.53
    A. Hauschild, P. Steigenberger, C. Rodriguez-Solano: QZS-1 Yaw attitude estimation based on measurements from the CONGO network, Navigation 59(3), 237–248 (2012)CrossRefGoogle Scholar
  54. 11.54
    H. Noda, S. Kogure, M. Kishimoto, H. Soga, T. Moriguchi, T. Furubayashi: Development of the quasi-zenith satellite system and high-accuracy positioning experiment system flight model, NEC Tech. J. 5(4), 93–97 (2010)Google Scholar
  55. 11.55
    T. Obara, S. Furuhata, H. Matsumoto: Overview of initial observation data of technical data acquisition equipments on the first Quasi-Zenith Satellite, 2011-r-58, Proc. 28th Int. Symp. Space Technol. Sci. (ISTS), Okinawa (ISTS, Tokyo 2011) pp. 1–4Google Scholar
  56. 11.56
    S. Hama, Y. Takahashi, K. Kimura, H. Ito, J. Amagai: Quasi-Zenith Satellite System (QZSS) Project, J. Natl. Inst. Inf. Commun. Technol. 57(3/4), 289–296 (2010)Google Scholar
  57. 11.57
    M. Nakamura, Y. Takahashi, J. Amagai, T. Gotoh, M. Fujieda, R. Tabuchi, S. Hama, Y. Yahagi, T. Takahashi, S. Horiuchi: Time comparison experiments between the QZS-1 and its time management station, Navigation 60(4), 319–324 (2013)CrossRefGoogle Scholar
  58. 11.58
    O. Montenbruck, P. Steigenberger, E. Schönemann, A. Hauschild, U. Hugentobler, R. Dach, M. Becker: Flight characterization of new generation GNSS satellite clocks, Navigation 59(4), 291–302 (2012)CrossRefGoogle Scholar
  59. 11.59
    H. Ito, T. Morikawa, S. Hama: Development and performance evaluation of spaceborne hydrogen maser atomic clock in NICT, ION NTM, San Diego (ION, Virginia 2007) pp. 452–454Google Scholar
  60. 11.60
    T. Iwata, T. Matsuzawa, K. Machita, T. Kawauchi, S. Ota, Y. Fukuhara, T. Hiroshima, K. Tokita, T. Takahashi, S. Horiuchi, Y. Takahashi: Demonstration experiments of a remote synchronization system of an onboard crystal oscillator using ‘‘MICHIBIKI’’, Navigation 60(2), 133–142 (2013)CrossRefGoogle Scholar
  61. 11.61
    S. Nakamura: Impact of SLR tracking on QZSS, Proc. Int. Tech. Workshop SLR Track. GNSS Constellations, Metsovo, ed. by E. Pavlis (ILRS, Greenbelt 2009) pp. 68–92Google Scholar
  62. 11.62
    M.R. Pearlman, J.J. Degnan, J.M. Bosworth: The International Laser Ranging Service, Adv. Space Res. 30(2), 135–143 (2002)CrossRefGoogle Scholar
  63. 11.63
    O. Montenbruck, P. Steigenberger, G. Kirchner: GNSS satellite orbit validation using satellite laser ranging, Proc. 18th Int. Workshop Laser Ranging, Fujiyoshida (ILRS, Greenbelt 2013) pp. 13–0209Google Scholar
  64. 11.64
    K. Akiyama, T. Otsubo: Accuracy evaluation of QZS-1 orbit solutions with Satellite Laser Ranging, Proc. ILRS Tech. Laser Workshop Satell., Lunar Planet. Laser Ranging: Charact. Space Segment, Frascati (ILRS, Greenbelt 2012)Google Scholar
  65. 11.65
    N. Inaba, H. Hase, H. Miyamoto, Y. Ishijima, S. Kawakita: A satellite simulator and model based operations in Quasi-Zenith Satellite System, AIAA Model. Simul. Conf., AIAA-2009-5813, Chicago (AIAA, Reston 2009) pp. 1–16Google Scholar
  66. 11.66
    H. Miyamoto, M. Kishimoto, E. Myojin, S. Kogure: Model-based design of Ground Segment for Quasi-Zenith Satellite System, Proc. SpaceOps 2012 Conf., Stockholm (AIAA, Reston 2012) pp. 1–7Google Scholar
  67. 11.67
    M. Nakamura, S. Hama, Y. Takahashi, J. Amagai, T. Gotoh, M. Fujieda, R. Tabuchi, M. Aida, I. Nakazawa, T. Hobiger, T. Takahashi, S. Horiuchi: Time management system of the QZSS and time comparison experiments, AIAA 2011-8067, 29th AIAA Int. Commun. Satell. Syst. Conf. (ICSSC-2011), Nara (AIAA, Reston 2011) pp. 534–538Google Scholar
  68. 11.68
    N. Kajiwara, Y. Yamamoto, M. Sawabe, S. Kogure, T. Tsuruta, M. Kishimoto, Y. Kawaguchi, T. Shibata: Overview of precise orbit and clock estimation for Quasi-Zenith Satellite System and simulation results, 2009-d-35, Proc. 27th Int. Symp. Space Technol. Sci. (ISTS), Tsukuba (ISTS, Tokyo 2009) pp. 1–6Google Scholar
  69. 11.69
    S. Matsumura, M. Murakami, T. Imakiire: Concept of the new Japanese geodetic system, Bull. Geogr. Surv. Inst. 51, 1–9 (2004)Google Scholar
  70. 11.70
    J.A. Klobuchar: Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Trans. Aerosp. Electron. Syst. AES-2 3(3), 325–331 (1987)CrossRefGoogle Scholar
  71. 11.71
    E.M. Soop: Handbook of Geostationary Orbits (Kluwer Academic, Dordrecht 1994)CrossRefGoogle Scholar
  72. 11.72
    Notice Advisory to QZSS Users (JAXA),
  73. 11.73
    T. Sawamura, T. Takahashi, T. Moriguchi, K. Ohara, H. Noda, S. Kogure, M. Kishimoto: Performance of QZSS (Quasi-Zenith Satellite System) and L-Band Navigation Payload, ION GNSS, Nashville (ION, Virginia 2012) pp. 1228–1254Google Scholar
  74. 11.74
    E. Kishimoto, M. Myojin, S. Kogure, H. Noda, K. Terada: QZSS On Orbit Technical Verification Results, ION GNSS, Portland (ION, Virginia 2011) pp. 1206–1211Google Scholar
  75. 11.75
    JAXA: ‘‘QZ-vision’’ Experiment Results SIS-URE,
  76. 11.76
    O. Montenbruck, P. Steigenberger, A. Hauschild: Broadcast versus precise ephemerides: A Multi-GNSS perspective, GPS Solut. 19(2), 321–333 (2015)CrossRefGoogle Scholar
  77. 11.77
    F. Gonzalez, P. Waller: GNSS clock performance analysis using one-way carrier phase and network methods, 39th Annu. Precise Time Time Interval (PTTI) Meet., Long Beach (ION, Virginia 2007) pp. 403–414Google Scholar
  78. 11.78
    P. Steigenberger, A. Hauschild, O. Montenbruck, C. Rodriguez-Solano, U. Hugentobler: Orbit and clock determination of QZS-1 based on the CONGO network, Navigation 60(1), 31–40 (2013)CrossRefGoogle Scholar
  79. 11.79
    A.S. Ganeshan, S.C. Rathnakara, R. Gupta, A.K. Jain: Indian Regional Navigation Satellite System (IRNSS) Concept, J. Spacecr. Technol. 15(2), 19–23 (2005)Google Scholar
  80. 11.80
    B.S. Kiran, S. Singh: Mission design and analysis for IRNSS-1A, Proc. 65th Int. Astronaut. Congr., Toronto (IAF, Paris 2000) pp. 1–12Google Scholar
  81. 11.81
    P. Majithiya, K. Khatri, J.K. Hota: Indian Regional Navigation Satellite System – Correction parameters for timing group delays, Inside GNSS 6(1), 40–46 (2011)Google Scholar
  82. 11.82
    S. Thoelert, O. Montenbruck, M. Meurer: IRNSS-1A – Signal and clock characterization of the Indian Regional Navigation System, GPS Solutions 18(1), 147–152 (2014)CrossRefGoogle Scholar
  83. 11.83
    S.B. Sekar, S. Sengupta, K. Bandyopadhyay: Spectral compatibility of BOC(5,2) modulation with existing GNSS signals, Proc. IEEE/ION PLANS 2012, Myrtle Beach (2012) pp. 886–890Google Scholar
  84. 11.84
    Indian Regional Navigation Satellite System – Signal In Space ICD for Standard Positioning Service, version 1.0, June 2014 (Indian Space Research Organization, Bangalore, 2014)Google Scholar
  85. 11.85
    P. Misra, P. Enge: Global Positioning System; Signals, Measurements and Performance, 2nd edn. (Ganga-Jamuna Press, Lincoln, MA 2006)Google Scholar
  86. 11.86
    A.S. Ganeshan: Overview of GNSS and Indian Navigation Program, GNSS User Meet. (ISRO Satellite Center, Bangalore 2012)Google Scholar
  87. 11.87
    T. Neetha, A. Kartik, S.C. Ratnakar, A.S. Ganeshan: The IRNSS Navigation Message, J. Spacecr. Technol. 21(1), 41–51 (2011)Google Scholar
  88. 11.88
    O. Montenbruck, P. Steigenberger: The BeiDou Navigation Message, J. Glob. Position. Syst. 12(1), 1–12 (2013)CrossRefGoogle Scholar
  89. 11.89
    T. Rethika, S. Mishra, S. Nirmala, S.C. Rathnakara, A.S. Ganeshan: Single frequency ionospheric error correction using coefficients generated from regional ionospheric data for IRNSS, Indian J. Radio Space Phys. 42(3), 125–130 (2013)Google Scholar
  90. 11.90
    H. Harde, M.R. Shahade, D. Badnore: Indian Regional Navigation System, Int. J. Res. Sci. Eng. 1(SP1), 36–42 (2015)Google Scholar
  91. 11.91
    T.S. Ganesh, C.K. Sharma, S. Venkateswarlu, G.J. Das, B.S. Chandrasekhar, S.K. Shivakumars: Use of two-way CDMA ranging for precise orbit determination of IRNSS satellites, Int. J. Syst. Technol. 3(1), 127–137 (2010)Google Scholar
  92. 11.92
    R. Babu, P. Mula, S.C. Ratnakara, A.S. Ganeshan: IRNSS satellite parameter estimation using combination strategy, Glob. J. Sci. Front. Res. 15(3), 1–10 (2015)Google Scholar
  93. 11.93
    S. Kavitha, P. Mula, R. Babu, S.C. Ratnakara, A.S. Ganeshan: Adaptive extended Kalman filter for orbit estimation of GEO satellites, J. Env. Earth Sci. 5(3), 1–10 (2015)Google Scholar
  94. 11.94
    O. Montenbruck, P. Steigenberger: IRNSS orbit determination and broadcast ephemeris assessment, ION ITM, Dana Point (ION, Virginia 2015) pp. 185–193Google Scholar
  95. 11.95
    PSLV-C22/IRNSS-1A brochure (ISRO, Bangalore 2013)Google Scholar
  96. 11.96
    A. Kumari, K. Samal, D. Rajarajan, U. Swami, A. Kartik, R. Babu, S.C. Rathnakara, A.S. Ganeshan: Precise modeling of solar radiation pressure for IRNSS satellite, J. Nat. Sci. Res. 5(3), 35–43 (2015)Google Scholar
  97. 11.97
    K. Varma, D. Rajarajan, N. Tirmal, S.C. Rathnakara, A.S. Ganeshan: Modeling of IRNSS System Time-Offset with Respect to other GNSS, Contr. Theory Inform. 5(2), 10–17 (2015)Google Scholar
  98. 11.98
    N. Neelakantan: Overview of the Timing system planned for IRNSS, 5th Meet. Int. Comm. GNSS (ICG), Turn (UNOOSA, Vienna 2010) pp. 1–6Google Scholar
  99. 11.99
    R.B. Langley: Dilution of precision, GPS World 10(5), 52–59 (1999)Google Scholar
  100. 11.100
    A.D. Sarma, Q. Sultana, V.S. Srinivas: Augmentation of Indian Regional Navigation Satellite System to improve dilution of precision, J. Navig. 63(2), 313–321 (2010)CrossRefGoogle Scholar
  101. 11.101
    A.S. Ganeshan, S.C. Ratnakara, N. Srinivasan, B. Rajaram, K.N. Anbalagan: Tirmal: First position fix with IRNSS – Successful proof-of-concept demonstration, Inside GNSS 10(4), 48–52 (2015)Google Scholar
  102. 11.102
    N. Nadarajah, A. Khodabandeh, P.J.G. Teunissen: Assessing the IRNSS L5-signal in combination with GPS, Galileo, and QZSS L5/E5a-signals for positioning and navigation, GPS Solutions (2015), doi: 10.1007/s10291-015-0450-8

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Satoshi Kogure
    • 1
    Email author
  • A.S. Ganeshan
    • 2
  • Oliver Montenbruck
    • 3
  1. 1.QZSS Strategy OfficeNational Space Policy Secretariat, Cabinet OfficeTokyoJapan
  2. 2.ISRO Satellite Centre (ISAC)Indian Space Research Organization (ISRO)BangaloreIndia
  3. 3.German Aerospace Center (DLR)WesslingGermany

Personalised recommendations