Introduction to GNSS

  • Richard B. Langley
  • Peter J.G. Teunissen
  • Oliver Montenbruck
Part of the Springer Handbooks book series (SHB)


This chapter is a primer on global navigation satellite systems (GNSS s). It assumes no prior knowledge of the systems or how they work. All of the key concepts of satellite-based positioning, navigation, and timing (PNT ) are introduced with pointers to subsequent chapters for further details. The chapter begins with a history of PNT using satellites and then introduces the concept of positioning using measured ranges between a receiver and satellites. The basic observation equations are then described along with the associated error budgets. Subsequently, the various GNSSs now in operation and in development are briefly overviewed. The chapter concludes with a discussion of the relevance and importance of GNSS for science and society at large.


Global Position System Global Navigation Satellite System Global Navigation Satellite System Precise Point Position International GNSS Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

binary offset carrier


binary phase-shift keying


code division multiple access


Commercial Service


Deutsches Zentrum für Luft- und Raumfahrt


Earth-centered Earth-fixed


European Geostationary Navigation Overlay Service


European Space Agency


extreme ultraviolet


frequency division multiple access


full operational capability


GPS-aided GEO Augmented Navigation


geostationary Earth orbit


Deutsches GeoForschungsZentrum


Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)


global navigation satellite system


Global Positioning System


horizontal dilution of precision


International GNSS Service


inclined geo-synchronous orbit


in-orbit validation


Indian Regional Navigation Satellite System


International Terrestrial Reference Frame


medium Earth orbit


Multi-Function Satellite Augmentation System


North American Datum


National Aeronautics and Space Administration


Open Service


position dilution of precision


positioning, navigation and timing


precise point positioning


precise positioning service


pseudo-random noise


Quasi-Zenith Satellite System


Radio Technical Commission for Aeronautics


Radio Technical Commission for Maritime Services


real-time kinematic


satellite-based augmentation system


System for Differential Corrections and Monitoring


signal-in-space range error


satellite laser ranging


single point positioning


standard positioning service


total electron content


user equivalent range error


ultra-high frequency


University NAVSTAR Consortium


vertical dilution of precision


very high frequency


Wide Area Augmentation System


World Geodetic System



Some of the material in this chapter stems from the authors lectures on GNSS over the years and the beneficial input of past and present students, research associates, and other colleagues. Some of it is also drawn from the first author’s long running Innovation column in GPS World magazine.


  1. 1.1
    J.R. Vetter: Fifty years of orbit determination: Development of modern astrodynamics methods, Johns Hopkins APL Tech. Dig. 27(3), 239–252 (2007)Google Scholar
  2. 1.2
    T.A. Stansell: The Navy Navigation Satellite System: Description and status, Navigation 15(3), 229–243 (1968)CrossRefGoogle Scholar
  3. 1.3
    R.J. Danchik: An overview of Transit development, Johns Hopkins APL Tech. Dig. 19(1), 18–26 (1998)Google Scholar
  4. 1.4
    P. Daly, G.E. Perry: Recent developments with the Soviet Union’s VHF satellite navigation system, Space Commun. Broadcast. 4, 51–61 (1986)Google Scholar
  5. 1.5
    P. Daly, G.E. Perry: Update on the behaviour of the Soviet Union’s VHF satellite navigation system, Space Commun. Broadcast. 5, 379–384 (1987)Google Scholar
  6. 1.6
    G. Seeber: Satellite Geodesy: Foundations, Methods and Aplications (Walter de Gruyter, Berlin 2003)CrossRefGoogle Scholar
  7. 1.7
    K. Kovach: New user equivalent range error (UERE) budget for the modernized Navstar Global Positioning System (GPS), Proc. ION NTM, Anaheim (2000) pp. 550–573Google Scholar
  8. 1.8
    Global Positioning System Standard Positioning Service Performance Standard (US Department of Defense, Washington DC 2008)Google Scholar
  9. 1.9
    O. Montenbruck, P. Steigenberger, A. Hauschild: Broadcast versus precise ephemerides: A multi-GNSS perspective, GPS Solutions 19(2), 321–333 (2015)CrossRefGoogle Scholar
  10. 1.10
    R. Prieto-Cerdeira, R. Orus-Peres, E. Breeuwer, R. Lucas-Rodriguez, M. Falcone: The European way: Performance of the Galileo single-frequency ionospheric correction during in-orbit validation, GPS World 25(6), 53–58 (2014)Google Scholar
  11. 1.11
    D. Milbert: Dilution of precision revisited, Navigation 55(1), 67–81 (2008)CrossRefGoogle Scholar
  12. 1.12
    S. Whitney: Global Positioning System status, Proc. ION GNSS+, Tampa (2015) pp. 1193–1206Google Scholar
  13. 1.13
    Minimum Operational Performance Standards for Global Positioning/Wide Area Augmentation System Airborne Equipment (RTCA, Washington DC 2006)Google Scholar
  14. 1.14
    R. Leandro, M. Santos, R.B. Langley: UNB neutral atmosphere models: Development and performance, Proc. ION NTM 2006, Monterey (ION, Virginia 2006) pp. 564–573Google Scholar
  15. 1.15
    R.F. Leandro, R.B. Langley, M.C. Santos: UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques, GPS Solutions 12(1), 65–70 (2008)CrossRefGoogle Scholar
  16. 1.16
    A. Komjathy: Global Ionospheric Total Electron Content Mapping Using the Global Positioning System, Ph.D. Thesis (Univ. New Brunswick, Fredericton 1997)Google Scholar
  17. 1.17
    J.A. Klobuchar: Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Trans. Aerosp. Electron. Sys. 23(3), 325–331 (1987)CrossRefGoogle Scholar
  18. 1.18
    European GNSS (Galileo) Open Service Ionospheric Correction Algorithm for Galileo Single Frequency Users, Iss. 1.2 (European Commission, 2016)Google Scholar
  19. 1.19
    S. Banville, R.B. Langley: Instantaneous cycle-slip correction for real-time PPP applications, Navigation 57(4), 325–334 (2010)CrossRefGoogle Scholar
  20. 1.20
    P.J.G. Teunissen: The Least-squares Ambiguity Decorrelation Adjustment: A method for fast GPS integer ambiguity estimation, J. Geod. 70(1), 65–82 (1995)CrossRefGoogle Scholar
  21. 1.21
    RTCM Standard 10403.2 Differential GNSS Services, Version 3 with Ammendment 2 (RTCM, Arlington 2013)Google Scholar
  22. 1.22
    C. Haslett: Essentials of Radio Wave Propagation (Cambridge Univ. Press, Cambridge 2008)Google Scholar
  23. 1.23
    A.W. Doerry: Earth Curvature and Atmospheric Refraction Effects on Radar Signal Propagation (Sandia National Laboratories, Albuquerque NM 2013), Sandia Report SAND2012-10690CrossRefGoogle Scholar
  24. 1.24
    G. Weber, D. Dettmering, H. Gebhard, R. Kalafus: Networked transport of RTCM via internet protocol (Ntrip) – IP-streaming for real-time GNSS applications, Proc. ION GPS, Long Beach (ION, Virginia 2005) pp. 2243–2247Google Scholar
  25. 1.25
    J.G. Walker: Satellite constellations, J. Br. Interplanet. Soc. 37, 559–572 (1984)Google Scholar
  26. 1.26
    European GNSS Agency: GNSS Market Report, 4th edn. (Publications Office of the European Union, Luxembourg 2015)Google Scholar
  27. 1.27
    J.V. Stafford: Implementing precision agriculture in the 21st century, J. Agric. Eng. Res. 76(3), 267–275 (2000)CrossRefGoogle Scholar
  28. 1.28
    A. Carta, N. Locci, C. Muscas, S. Sulis: A flexible GPS-based system for synchronized phasor measurement in electric distribution networks, IEEE Trans. Instrum. Meas. 57(11), 2450–2456 (2008)CrossRefGoogle Scholar
  29. 1.29
    K.M. Larson, J.T. Freymueller, S. Philipsen: Global plate velocities from the Global Positioning System, J. Geophys. Res. Solid Earth 102(B5), 9961–9981 (1997)CrossRefGoogle Scholar
  30. 1.30
    M. Hernandéz-Pajares, J.M. Juan, J. Sanz: New approaches in global ionospheric determination using ground GPS data, J. Atmos. Sol. -Terr. Phys. 61(16), 1237–1247 (1999)CrossRefGoogle Scholar
  31. 1.31
    M. Bevis, S. Chiswell, T.A. Herring, R.A. Anthes, C. Rocken, R.H. Ware: GPS meteorology: Mapping zenith wet delays onto precipitable water, J. Appl. Meteorol. 33(3), 379–386 (1994)CrossRefGoogle Scholar
  32. 1.32
    E. Calais, J.B. Minster: GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Letts. 22(9), 1045–1048 (1995)CrossRefGoogle Scholar
  33. 1.33
    A. Komjathy, Y.-M. Yang, X. Meng, O. Verkhoglyadova, A.J. Mannucci, R.B. Langley: Review and perspectives: Understanding naturalhazards-generated ionospheric perturbations using GPS measurements and coupled modeling, Radio Sci. 51(7), 951–961 (2016)CrossRefGoogle Scholar
  34. 1.34
    T. Nilsson, G. Elgered: Long-term trends in the atmospheric water vapour content estimated from ground-based GPS data, J. Geophys. Res. 113(D19101), 1–12 (2008)Google Scholar
  35. 1.35
    R.A. Anthes: Exploring earth’s atmosphere with radio occultation: Contributions to weather, climate and space weather, Atmos. Meas. Tech. 4, 1077–1103 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Richard B. Langley
    • 1
  • Peter J.G. Teunissen
    • 2
  • Oliver Montenbruck
    • 3
  1. 1.Dept. of Geodesy & Geomatics EngineeringUniversity of New BrunswickFrederictonCanada
  2. 2.Dept. of Spatial SciencesCurtin UniversityPerthAustralia
  3. 3.German Aerospace Center (DLR)WesslingGermany

Personalised recommendations