Introduction to GNSS

  • Richard B. Langley
  • Peter J.G. Teunissen
  • Oliver Montenbruck
Part of the Springer Handbooks book series (SPRINGERHAND)

Zusammenfassung

This chapter is a primer on global navigation satellite systems (GNSS s). It assumes no prior knowledge of the systems or how they work. All of the key concepts of satellite-based positioning, navigation, and timing (PNT ) are introduced with pointers to subsequent chapters for further details. The chapter begins with a history of PNT using satellites and then introduces the concept of positioning using measured ranges between a receiver and satellites. The basic observation equations are then described along with the associated error budgets. Subsequently, the various GNSSs now in operation and in development are briefly overviewed. The chapter concludes with a discussion of the relevance and importance of GNSS for science and society at large.

Keywords

Global Position System Global Navigation Satellite System Global Navigation Satellite System Precise Point Position International GNSS Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
BOC

binary offset carrier

BPSK

binary phase-shift keying

CDMA

code division multiple access

CS

Commercial Service

DLR

Deutsches Zentrum für Luft- und Raumfahrt

ECEF

Earth-centered Earth-fixed

EGNOS

European Geostationary Navigation Overlay Service

ESA

European Space Agency

EUV

extreme ultraviolet

FDMA

frequency division multiple access

FOC

full operational capability

GAGAN

GPS-aided GEO Augmented Navigation

GEO

geostationary Earth orbit

GFZ

Deutsches GeoForschungsZentrum

GLONASS

Global’naya Navigatsionnaya Sputnikova Sistema (Russian Global Navigation Satellite System)

GNSS

global navigation satellite system

GPS

Global Positioning System

HDOP

horizontal dilution of precision

IGS

International GNSS Service

IGSO

inclined geo-synchronous orbit

IOV

in-orbit validation

IRNSS

Indian Regional Navigation Satellite System

ITRF

International Terrestrial Reference Frame

MEO

medium Earth orbit

MSAS

Multi-Function Satellite Augmentation System

NAD

North American Datum

NASA

National Aeronautics and Space Administration

OS

Open Service

PDOP

position dilution of precision

PNT

positioning, navigation and timing

PPP

precise point positioning

PPS

precise positioning service

PRN

pseudo-random noise

QZSS

Quasi-Zenith Satellite System

RTCA

Radio Technical Commission for Aeronautics

RTCM

Radio Technical Commission for Maritime Services

RTK

real-time kinematic

SBAS

satellite-based augmentation system

SDCM

System for Differential Corrections and Monitoring

SISRE

signal-in-space range error

SLR

satellite laser ranging

SPP

single point positioning

SPS

standard positioning service

TEC

total electron content

UERE

user equivalent range error

UHF

ultra-high frequency

UNAVCO

University NAVSTAR Consortium

VDOP

vertical dilution of precision

VHF

very high frequency

WAAS

Wide Area Augmentation System

WGS

World Geodetic System

Notes

Acknowledgements

Some of the material in this chapter stems from the authors lectures on GNSS over the years and the beneficial input of past and present students, research associates, and other colleagues. Some of it is also drawn from the first author’s long running Innovation column in GPS World magazine.

References

  1. 1.1
    J.R. Vetter: Fifty years of orbit determination: Development of modern astrodynamics methods, Johns Hopkins APL Tech. Dig. 27(3), 239–252 (2007)Google Scholar
  2. 1.2
    T.A. Stansell: The Navy Navigation Satellite System: Description and status, Navigation 15(3), 229–243 (1968)CrossRefGoogle Scholar
  3. 1.3
    R.J. Danchik: An overview of Transit development, Johns Hopkins APL Tech. Dig. 19(1), 18–26 (1998)Google Scholar
  4. 1.4
    P. Daly, G.E. Perry: Recent developments with the Soviet Union’s VHF satellite navigation system, Space Commun. Broadcast. 4, 51–61 (1986)Google Scholar
  5. 1.5
    P. Daly, G.E. Perry: Update on the behaviour of the Soviet Union’s VHF satellite navigation system, Space Commun. Broadcast. 5, 379–384 (1987)Google Scholar
  6. 1.6
    G. Seeber: Satellite Geodesy: Foundations, Methods and Aplications (Walter de Gruyter, Berlin 2003)CrossRefGoogle Scholar
  7. 1.7
    K. Kovach: New user equivalent range error (UERE) budget for the modernized Navstar Global Positioning System (GPS), Proc. ION NTM, Anaheim (2000) pp. 550–573Google Scholar
  8. 1.8
    Global Positioning System Standard Positioning Service Performance Standard (US Department of Defense, Washington DC 2008)Google Scholar
  9. 1.9
    O. Montenbruck, P. Steigenberger, A. Hauschild: Broadcast versus precise ephemerides: A multi-GNSS perspective, GPS Solutions 19(2), 321–333 (2015)CrossRefGoogle Scholar
  10. 1.10
    R. Prieto-Cerdeira, R. Orus-Peres, E. Breeuwer, R. Lucas-Rodriguez, M. Falcone: The European way: Performance of the Galileo single-frequency ionospheric correction during in-orbit validation, GPS World 25(6), 53–58 (2014)Google Scholar
  11. 1.11
    D. Milbert: Dilution of precision revisited, Navigation 55(1), 67–81 (2008)CrossRefGoogle Scholar
  12. 1.12
    S. Whitney: Global Positioning System status, Proc. ION GNSS+, Tampa (2015) pp. 1193–1206Google Scholar
  13. 1.13
    Minimum Operational Performance Standards for Global Positioning/Wide Area Augmentation System Airborne Equipment (RTCA, Washington DC 2006)Google Scholar
  14. 1.14
    R. Leandro, M. Santos, R.B. Langley: UNB neutral atmosphere models: Development and performance, Proc. ION NTM 2006, Monterey (ION, Virginia 2006) pp. 564–573Google Scholar
  15. 1.15
    R.F. Leandro, R.B. Langley, M.C. Santos: UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques, GPS Solutions 12(1), 65–70 (2008)CrossRefGoogle Scholar
  16. 1.16
    A. Komjathy: Global Ionospheric Total Electron Content Mapping Using the Global Positioning System, Ph.D. Thesis (Univ. New Brunswick, Fredericton 1997)Google Scholar
  17. 1.17
    J.A. Klobuchar: Ionospheric time-delay algorithm for single-frequency GPS users, IEEE Trans. Aerosp. Electron. Sys. 23(3), 325–331 (1987)CrossRefGoogle Scholar
  18. 1.18
    European GNSS (Galileo) Open Service Ionospheric Correction Algorithm for Galileo Single Frequency Users, Iss. 1.2 (European Commission, 2016)Google Scholar
  19. 1.19
    S. Banville, R.B. Langley: Instantaneous cycle-slip correction for real-time PPP applications, Navigation 57(4), 325–334 (2010)CrossRefGoogle Scholar
  20. 1.20
    P.J.G. Teunissen: The Least-squares Ambiguity Decorrelation Adjustment: A method for fast GPS integer ambiguity estimation, J. Geod. 70(1), 65–82 (1995)CrossRefGoogle Scholar
  21. 1.21
    RTCM Standard 10403.2 Differential GNSS Services, Version 3 with Ammendment 2 (RTCM, Arlington 2013)Google Scholar
  22. 1.22
    C. Haslett: Essentials of Radio Wave Propagation (Cambridge Univ. Press, Cambridge 2008)Google Scholar
  23. 1.23
    A.W. Doerry: Earth Curvature and Atmospheric Refraction Effects on Radar Signal Propagation (Sandia National Laboratories, Albuquerque NM 2013), Sandia Report SAND2012-10690CrossRefGoogle Scholar
  24. 1.24
    G. Weber, D. Dettmering, H. Gebhard, R. Kalafus: Networked transport of RTCM via internet protocol (Ntrip) – IP-streaming for real-time GNSS applications, Proc. ION GPS, Long Beach (ION, Virginia 2005) pp. 2243–2247Google Scholar
  25. 1.25
    J.G. Walker: Satellite constellations, J. Br. Interplanet. Soc. 37, 559–572 (1984)Google Scholar
  26. 1.26
    European GNSS Agency: GNSS Market Report, 4th edn. (Publications Office of the European Union, Luxembourg 2015)Google Scholar
  27. 1.27
    J.V. Stafford: Implementing precision agriculture in the 21st century, J. Agric. Eng. Res. 76(3), 267–275 (2000)CrossRefGoogle Scholar
  28. 1.28
    A. Carta, N. Locci, C. Muscas, S. Sulis: A flexible GPS-based system for synchronized phasor measurement in electric distribution networks, IEEE Trans. Instrum. Meas. 57(11), 2450–2456 (2008)CrossRefGoogle Scholar
  29. 1.29
    K.M. Larson, J.T. Freymueller, S. Philipsen: Global plate velocities from the Global Positioning System, J. Geophys. Res. Solid Earth 102(B5), 9961–9981 (1997)CrossRefGoogle Scholar
  30. 1.30
    M. Hernandéz-Pajares, J.M. Juan, J. Sanz: New approaches in global ionospheric determination using ground GPS data, J. Atmos. Sol. -Terr. Phys. 61(16), 1237–1247 (1999)CrossRefGoogle Scholar
  31. 1.31
    M. Bevis, S. Chiswell, T.A. Herring, R.A. Anthes, C. Rocken, R.H. Ware: GPS meteorology: Mapping zenith wet delays onto precipitable water, J. Appl. Meteorol. 33(3), 379–386 (1994)CrossRefGoogle Scholar
  32. 1.32
    E. Calais, J.B. Minster: GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Letts. 22(9), 1045–1048 (1995)CrossRefGoogle Scholar
  33. 1.33
    A. Komjathy, Y.-M. Yang, X. Meng, O. Verkhoglyadova, A.J. Mannucci, R.B. Langley: Review and perspectives: Understanding naturalhazards-generated ionospheric perturbations using GPS measurements and coupled modeling, Radio Sci. 51(7), 951–961 (2016)CrossRefGoogle Scholar
  34. 1.34
    T. Nilsson, G. Elgered: Long-term trends in the atmospheric water vapour content estimated from ground-based GPS data, J. Geophys. Res. 113(D19101), 1–12 (2008)Google Scholar
  35. 1.35
    R.A. Anthes: Exploring earth’s atmosphere with radio occultation: Contributions to weather, climate and space weather, Atmos. Meas. Tech. 4, 1077–1103 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Richard B. Langley
    • 1
  • Peter J.G. Teunissen
    • 2
  • Oliver Montenbruck
    • 3
  1. 1.Dept. of Geodesy & Geomatics EngineeringUniversity of New BrunswickFrederictonCanada
  2. 2.Dept. of Spatial SciencesCurtin UniversityPerthAustralia
  3. 3.German Aerospace Center (DLR)WesslingGermany

Personalised recommendations