Hong, Z., Mei, X., Prokhorov, D., Tao, D.: Tracking via robust multi-task multi-view joint sparse representation. In: ICCV (2013)
Google Scholar
Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: CVPR (2012)
Google Scholar
Liu, B., Huang, J., Kulikowski, C., Yang, L.: Robust visual tracking using local sparse appearance model and k-selection. TPAMI 35(12), 2968–2981 (2013)
CrossRef
Google Scholar
Mei, X., Ling, H., Wu, Y., Blasch, E., Bai, L.: Minimum error bounded efficient \(l_1\) tracker with occlusion detection. In: CVPR (2011)
Google Scholar
Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: CVPR (2012)
Google Scholar
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. TPAMI 37(3), 583–596 (2015)
CrossRef
Google Scholar
Zhang, K., Liu, Q., Wu, Y., Yang, M.H.: Robust visual tracking via convolutional networks without training. TIP 25(4), 1779–1792 (2016)
MathSciNet
Google Scholar
Zhou, Y., Bai, X., Liu, W., Latecki, L.J.: Similarity fusion for visual tracking. IJCV, 1–27 (2016)
Google Scholar
Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. TPAMI 33(8), 1619–1632 (2011)
CrossRef
Google Scholar
Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. TPAMI 33(11), 2259–2272 (2011)
CrossRef
Google Scholar
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVC (2006)
Google Scholar
Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)
CrossRef
Google Scholar
Avidan, S.: Ensemble tracking. TPAMI 29(2), 261–271 (2007)
CrossRef
Google Scholar
Zhang, K., Zhang, L., Liu, Q., Zhang, D., Yang, M.-H.: Fast visual tracking via dense spatio-temporal context learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 127–141. Springer, Heidelberg (2014)
Google Scholar
Black, M.J., Jepson, A.D.: Eigentracking: robust matching and tracking of articulated objects using a view-based representation. IJCV 26(1), 63–84 (1998)
CrossRef
Google Scholar
Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: CVPR (2000)
Google Scholar
Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR (2006)
Google Scholar
Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. IJCV 77(1–3), 125–141 (2008)
CrossRef
Google Scholar
Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR (2010)
Google Scholar
Liu, B., Yang, L., Huang, J., Meer, P., Gong, L., Kulikowski, C.: Robust and fast collaborative tracking with two stage sparse optimization. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 624–637. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Low-rank sparse learning for robust visual tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 470–484. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Zhang, T., Liu, S., Ahuja, N., Yang, M.H., Ghanem, B.: Robust visual tracking via consistent low-rank sparse learning. IJCV 111(2), 171–190 (2015)
CrossRef
Google Scholar
Zhang, T., Ghanem, B., Liu, S., Xu, C., Ahuja, N.: Robust visual tracking via exclusive context modeling. IEEE Trans. Cybern. 46(1), 51–63 (2016)
CrossRef
Google Scholar
Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust L1 tracker using accelerated proximal gradient approach. In: CVPR (2012)
Google Scholar
Zhang, T., Liu, S., Xu, C., Yan, S., Ghanem, B., Ahuja, N., Yang, M.H.: Structural sparse tracking. In: CVPR (2015)
Google Scholar
Burges, D., Crisp, C.: A geometric interpretation of v\(-\)SVM classifiers. In: NIPS (2000)
Google Scholar
Coleman, T.F., Li, Y.: A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM J. Optim. 6(4), 1040–1058 (1996)
MathSciNet
CrossRef
MATH
Google Scholar
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012)
CrossRef
Google Scholar