Skip to main content

Local Search with Noisy Strategy for Minimum Vertex Cover in Massive Graphs

  • Conference paper
  • First Online:
Book cover PRICAI 2016: Trends in Artificial Intelligence (PRICAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9810))

Included in the following conference series:

Abstract

Finding minimum vertex covers (MinVC) for simple undirected graphs is a well-known NP-hard problem. In the literature there have been many heuristics for obtaining good vertex covers. However, most of them focus on solving this problem in relatively small graphs. Recently, a local search solver called FastVC is designed to solve the MinVC problem on real-world massive graphs. Since the traditional best-picking heuristic was believed to be of high complexity, FastVC replaces it with an approximate best-picking strategy. However, since best-picking has been proved to be powerful for a wide range of problems, abandoning it may be a great sacrifice. In this paper we have developed a local search MinVC solver which utilizes best-picking with noise to remove vertices. Experiments conducted on a broad range of real-world massive graphs show that our proposed method finds better vertex covers than state-of-the-art local search algorithms on many graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm.

  2. 2.

    http://lcs.ios.ac.cn/~caisw/Resource/realworld%20graphs.tar.gz.

  3. 3.

    http://www.graphrepository.com/networks.php.

  4. 4.

    https://github.com/math6068/NoiseVC.

  5. 5.

    http://lcs.ios.ac.cn/~caisw/Code/FastVCv2015.11.zip.

References

  1. Andrade, D.V., Resende, M.G.C., Werneck, R.F.F.: Fast local search for the maximum independent set problem. J. Heuristics 18(4), 525–547 (2012)

    Article  Google Scholar 

  2. Barbosa, V.C., Campos, L.C.D.: A novel evolutionary formulation of the maximum independent set problem. J. Comb. Optim. 8(4), 419–437 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, S.: Balance between complexity and quality: local search for minimum vertex cover in massive graphs. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI, pp. 25–31 (2015)

    Google Scholar 

  4. Cai, S., Su, K., Chen, Q.: EWLS: a new local search for minimum vertex cover. In: AAAI (2010)

    Google Scholar 

  5. Cai, S., Su, K., Luo, C., Sattar, A.: NuMVC: an efficient local search algorithm for minimum vertex cover. J. Artif. Intell. Res. 46, 687–716 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration checking heuristics for minimum vertex cover. Artif. Intell. 175(9), 1672–1696 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chung Graham, F., Lu, L.: Complex graphs and networks american mathematical society (2006)

    Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, vol. 6. MIT Press, Cambridge (2001)

    Google Scholar 

  9. Eubank, S., Kumar, V., Marathe, M.V., Srinivasan, A., Wang, N.: Structural and algorithmic aspects of massive social networks. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 718–727. Society for Industrial and Applied Mathematics (2004)

    Google Scholar 

  10. Ji, Y., Xu, X., Stormo, G.D.: A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences. Bioinformatics 20(10), 1603–1611 (2004)

    Article  Google Scholar 

  11. Jin, Y., Hao, J.: General swap-based multiple neighborhood tabu search for the maximum independent set problem. Eng. Appl. AI 37, 20–33 (2015)

    Article  Google Scholar 

  12. Johnson, D.S., Trick, M.A.: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, vol. 26. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  13. Katayama, K., Hamamoto, A., Narihisa, H.: An effective local search for the maximum clique problem. Inf. Process. Lett. 95(5), 503–511 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, C.M., Quan, Z.: An efficient branch-and-bound algorithm based on maxsat for the maximum clique problem. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, vol. 10, pp. 128–133. AAAI Press, Atlanta (2010)

    Google Scholar 

  15. Pullan, W.J., Hoos, H.H.: Dynamic local search for the maximum clique problem. J. Artif. Intell. Res. (JAIR) 25, 159–185 (2006)

    MATH  Google Scholar 

  16. Richter, S., Helmert, M., Gretton, C.: A stochastic local search approach to vertex cover. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 412–426. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics and visualization. In: AAAI, pp. 4292–4293 (2015)

    Google Scholar 

  18. Rossi, R.A., Ahmed, N.K.: Coloring large complex networks. Soc. Netw. Anal. Min. 4(1), 1–37 (2014)

    Article  Google Scholar 

  19. Rossi, R.A., Gleich, D.F., Gebremedhin, A.H., Patwary, M.M.A.: Fast maximum clique algorithms for large graphs. In: Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web Companion, pp. 365–366. International World Wide Web Conferences Steering Committee (2014)

    Google Scholar 

  20. Segundo, P.S., Rodríguez-Losada, D., Jiménez, A.: An exact bit-parallel algorithm for the maximum clique problem. Comput. OR 38(2), 571–581 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of facebook networks. Phys. A Stat. Mech. Appl. 391(16), 4165–4180 (2012)

    Article  Google Scholar 

  22. Wu, Q., Hao, J.K.: A review on algorithms for maximum clique problems. Eur. J. Oper. Res. 242(3), 693–709 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This work is supported by ARC Grant FT0991785, NSF Grant No. 61463044 and Grant No. [2014]7421 from the Joint Fund of the NSF of Guizhou province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongjie Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ma, Z., Fan, Y., Su, K., Li, C., Sattar, A. (2016). Local Search with Noisy Strategy for Minimum Vertex Cover in Massive Graphs. In: Booth, R., Zhang, ML. (eds) PRICAI 2016: Trends in Artificial Intelligence. PRICAI 2016. Lecture Notes in Computer Science(), vol 9810. Springer, Cham. https://doi.org/10.1007/978-3-319-42911-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42911-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42910-6

  • Online ISBN: 978-3-319-42911-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics