Ontology-Driven Extraction of Event Logs from Relational Databases

  • Diego Calvanese
  • Marco Montali
  • Alifah Syamsiyah
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 256)

Abstract

Process mining is an emerging discipline whose aim is to discover, monitor and improve real processes by extracting knowledge from event logs representing actual process executions in a given organizational setting. In this light, it can be applied only if faithful event logs, adhering to accepted standards (such as XES), are available. In many real-world settings, though, such event logs are not explicitly given, but are instead implicitly represented inside legacy information systems of organizations, which are typically managed through relational technology. In this work, we devise a novel framework that supports domain experts in the extraction of XES event log information from legacy relational databases, and consequently enables the application of standard process mining tools on such data. Differently from previous work, the extraction is driven by a conceptual representation of the domain of interest in terms of an ontology. On the one hand, this ontology is linked to the underlying legacy data leveraging the well-established ontology-based data access (OBDA) paradigm. On the other hand, our framework allows one to enrich the ontology through user-oriented log extraction annotations, which can be flexibly used to provide different log-oriented views over the data. Different data access modes are then devised so as to view the legacy data through the lens of XES.

Keywords

Multi-perspective process mining Log extraction Ontology-based data access Event data 

References

  1. 1.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: the DL-Lite approach. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The Mastro system for ontology-based data access. Semantic Web J. 2(1), 43–53 (2011)Google Scholar
  3. 3.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: tractable description logics for ontologies. In: Proceedings of AAAI (2005)Google Scholar
  4. 4.
    Alves de Medeiros, A.K., van der Aalst, W.M.P., Pedrinaci, C.: Semantic process mining tools: core building blocks. In: Proceedings of ECIS (2008)Google Scholar
  5. 5.
    Fahland, D., De Leoni, M., van Dongen, B., van der Aalst, W.M.P.: Many-to-many: some observations on interactions in artifact choreographies. In: Proceedings of ZEUS (2011)Google Scholar
  6. 6.
    Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley (2003)Google Scholar
  7. 7.
    Giese, M., et al.: Scalable end-user access to big data. In: Rajendra, A. (ed.) Big Data Computing. CRC (2013)Google Scholar
  8. 8.
    Günther, C.W., van der Aalst, W.M.P.: A generic import framework for process event logs. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 81–92. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    IEEE Task Force on Process Mining. Process mining case studies (2013). http://tinyurl.com/ovedwx4
  10. 10.
    IEEE Task Force on Process Mining. XES standard definition (2013). http://www.xes-standard.org/
  11. 11.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Rodríguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data access: Ontop of databases. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 558–573. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)CrossRefMATHGoogle Scholar
  14. 14.
    van der Aalst, W.M.P.: Extracting event data from databases to unleash process mining. In: Proceedings of BPM. Springer (2015)Google Scholar
  15. 15.
    van der Aalst, W.M.P., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Diego Calvanese
    • 1
  • Marco Montali
    • 1
  • Alifah Syamsiyah
    • 1
  • Wil M. P. van der Aalst
    • 2
  1. 1.Free University of Bozen-BolzanoBolzanoItaly
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations