Vestibular Schwannoma

  • Michael Mayinger
  • Stephanie E. CombsEmail author


Vestibular schwannoma (VS) or acoustic neuromas are benign tumors arising from the vestibular branch of the vestibulocochlear nerve. VS is derived from Schwann cells normally wrapping around the supporting nerve fibers. All functions of the facial and vestibulocochlear brain nerves may be affected when this tumorous lesion is growing in the tight internal auditory meatus. Typical symptoms of vestibular schwannomas are hearing impairment, gait disturbances, dizziness, and tinnitus, which reduce the quality of life of patients. Treatment options include conservative management, microsurgery, stereotactic radiosurgery, hypofractionated stereotactic radiotherapy, and fractionated stereotactic radiotherapy.

This chapter provides detailed information about VS and its types, epidemiological factors, pathogenesis, risk factors, diagnosis, staging, prognosis, and treatment strategies. Predictive factors and long-term outcomes of different methods of vestibular schwannoma management are described. Different treatment strategies are explained and compared with the main focus on radiotherapeutic approaches. A detailed insight into treatment planning of VS radiotherapy is given. At the end of this chapter, a case report highlighting the use of fractionated radiotherapy in a patient with VS is presented.


Vestibular schwannoma Acoustic neuroma Imaging techniques Wait-and-see strategy Surgery Microsurgery Radiotherapy Radiosurgery Stereotactic fractionated radiotherapy Clinical results Radiogenic side effects 


  1. 1.
    Park JK, Vernick DM, Ramakrishna N. Vestibular schwannoma (acoustic neuroma). 2016. http://www. Scholar
  2. 2.
    Schlehofer B, Schlaefer K, Blettner M, et al. Environmental risk factors for sporadic acoustic neuroma (Interphone Study Group, Germany). Eur J Cancer. 2007;43(11):1741–7.Google Scholar
  3. 3.
    Mohyuddin A, Neary WJ, Wallace A, et al. Molecular genetic analysis of the NF2 gene in young patients with unilateral vestibular schwannomas. J Med Genet. 2002;39(5):315–22.Google Scholar
  4. 4.
    Schüz J, Steding-Jessen M, Hansen S, et al. Sociodemographic factors and vestibular schwannoma: a Danish nationwide cohort study. Neuro Oncol. 2010;12(12):1291–9.Google Scholar
  5. 5.
    Lin D, Hegarty JL, Fischbein NJ, et al. The prevalence of “incidental” acoustic neuroma. Arch Otolaryngol Head Neck Surg. 2005;131(3):241–4.Google Scholar
  6. 6.
    Propp JM, McCarthy BJ, Davis FG, et al. Descriptive epidemiology of vestibular schwannomas. Neuro Oncol. 2006;8(1):1–11.Google Scholar
  7. 7.
    Babu R, Sharma R, Bagley JH, et al. Vestibular schwannomas in the modern era: epidemiology, treatment trends, and disparities in management. J Neurosurg. 2013;119(1):121–30.Google Scholar
  8. 8.
    ANA. What is an acoustic neuroma? - Acoustic Neuroma Association. [cited 12 November 2017]. Available from:
  9. 9.
    Curry, W.T., Jr. and F.G. Barker, II, Racial, ethnic and socioeconomic disparities in the treatment of brain tumors. J Neurooncol, 2009. 93(1): p. 25–39.Google Scholar
  10. 10.
    Sughrue ME, Kaur R, Rutkowski MJ, et al. Extent of resection and the long-term durability of vestibular schwannoma surgery. J Neurosurg. 2011;114(5):1218–23.Google Scholar
  11. 11.
    Roche PH, Bouvier C, Chinot O, et al. Genesis and biology of vestibular schwannomas. Prog Neurol Surg. 2008;21:24–31.Google Scholar
  12. 12.
    Schneider AB, Ron E, Lubin J, et al. Acoustic neuromas following childhood radiation treatment for benign conditions of the head and neck. Neuro Oncol. 2008;10(1):73–8.Google Scholar
  13. 13.
    Shore-Freedman E, Abrahams C, Recant W, et al. Neurilemomas and salivary gland tumors of the head and neck following childhood irradiation. Cancer. 1983;51(12):2159–63.Google Scholar
  14. 14.
    De Vocht F. The case of acoustic neuroma: comment on: mobile phone use and risk of brain neoplasms and other cancers. Int J Epidemiol. 2014;43(1):273–4.Google Scholar
  15. 15.
    Muscat JE, Malkin MG, Shore RE, et al. Handheld cellular telephones and risk of acoustic neuroma. Neurology. 2002;58(8):1304–6.Google Scholar
  16. 16.
    Hours M, Bernard M, Arslan M, et al. Can loud noise cause acoustic neuroma? Analysis of the INTERPHONE study in France. Occup Environ Med. 2009;66(7):480–6.Google Scholar
  17. 17.
    Bäcklund LM, Grandér D, Brandt L, et al. Parathyroid adenoma and primary CNS tumors. Int J Cancer. 2005;113(6):866–9.Google Scholar
  18. 18.
    Corona AP, Ferrite S, Lopes Mda S, et al. Risk factors associated with vestibular nerve schwannomas. Otol Neurotol. 2012;33(3):459–65.Google Scholar
  19. 19.
    Evans DG, Newton V, Neary W, et al. Use of MRI and audiological tests in presymptomatic diagnosis of type 2 neurofibromatosis (NF2). J Med Genet. 2000;37(12):944–7.Google Scholar
  20. 20.
    Jackler RK, Driscoll CLW. Tumors of the ear and temporal bone. Philadelphia, PA: Lippincott Williams & Wilkins; 2000.Google Scholar
  21. 21.
    Régis J, Carron R, Delsanti C, et al. Radiosurgery for vestibular schwannomas. Neurosurg Clin N Am. 2013;24(4):521–30.Google Scholar
  22. 22.
    Hasegawa T, Kida Y, Kato T, et al. Long-term safety and efficacy of stereotactic radiosurgery for vestibular schwannomas: evaluation of 440 patients more than 10 years after treatment with Gamma Knife surgery. J Neurosurg. 2013;118(3):557–65.Google Scholar
  23. 23.
    Wilson DF, Hodgson RS, Gustafson MF, et al. The sensitivity of auditory brainstem response testing in small acoustic neuromas. Laryngoscope. 1992;102(9):961–4.Google Scholar
  24. 24.
    Matthies C, Samii M, Krebs S. Management of vestibular schwannomas (acoustic neuromas): radiological features in 202 cases--their value for diagnosis and their predictive importance. Neurosurgery. 1997;40(3):469–81; discussion 481–2.Google Scholar
  25. 25.
    Marx SV, Langman AW, Crane RC. Accuracy of fast spin echo magnetic resonance imaging in the diagnosis of vestibular schwannoma. Am J Otolaryngol. 1999;20(4):211–6.Google Scholar
  26. 26.
    Rouleau GA, Merel P, Lutchman M, et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature. 1993;363(6429):515–21.Google Scholar
  27. 27.
    Combs SE, Welzel T, Schulz-Ertner D, et al. Differences in clinical results after LINAC-based single-dose radiosurgery versus fractionated stereotactic radiotherapy for patients with vestibular schwannomas. Int J Radiat Oncol Biol Phys. 2010;76(1):193–200.Google Scholar
  28. 28.
    Régis J, Pellet W, Delsanti C, et al. Functional outcome after gamma knife surgery or microsurgery for vestibular schwannomas. J Neurosurg. 2002;97(5):1091–100.Google Scholar
  29. 29.
    Schmerber S, Palombi O, Boubagra K, et al. Long-term control of vestibular schwannoma after a translabyrinthine complete removal. Neurosurgery. 2005;57(4):693–8; discussion 693–8.Google Scholar
  30. 30.
    Larson TL. Understanding the posttreatment imaging appearance of the internal auditory canal and cerebellopontine angle. Semin Ultrasound CT MR. 2003;24(3):133–46.Google Scholar
  31. 31.
    Carlson ML, Jacob JT, Pollock BE, et al. Long-term hearing outcomes following stereotactic radiosurgery for vestibular schwannoma: patterns of hearing loss and variables influencing audiometric decline. J Neurosurg. 2013;118(3):579–87.Google Scholar
  32. 32.
    Roos DE, Potter AE, Zacest AC. Hearing preservation after low dose linac radiosurgery for acoustic neuroma depends on initial hearing and time. Radiother Oncol. 2011;101(3):420–4.Google Scholar
  33. 33.
    Lanman TH, Brackmann DE, Hitselberger WE, et al. Report of 190 consecutive cases of large acoustic tumors (vestibular schwannoma) removed via the translabyrinthine approach. J Neurosurg. 1999;90(4):617–23.Google Scholar
  34. 34.
    Sughrue ME, Yang I, Aranda D, et al. Beyond audiofacial morbidity after vestibular schwannoma surgery. J Neurosurg. 2011;114(2):367–74.Google Scholar
  35. 35.
    Golfinos JG, Hill TC, Rokosh R, et al. A matched cohort comparison of clinical outcomes following microsurgical resection or stereotactic radiosurgery for patients with small- and medium-sized vestibular schwannomas. J Neurosurg. 2016;125(6):1472–82.Google Scholar
  36. 36.
    Lee NY, Riaz N, Lu J. Target volume delineation for conformal and intensity-modulated radiation therapy. New York: Springer; 2015.Google Scholar
  37. 37.
    Yomo S, Tamura M, Carron R, et al. A quantitative comparison of radiosurgical treatment parameters in vestibular schwannomas: the Leksell Gamma Knife Perfexion versus Model 4C. Acta Neurochir. 2010;152(1):47–55.Google Scholar
  38. 38.
    Leber KA, Bergloff J, Pendl G. Dose-response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg. 1998;88(1):43–50.Google Scholar
  39. 39.
    Kano H, Kondziolka D, Khan A, et al. Predictors of hearing preservation after stereotactic radiosurgery for acoustic neuroma. J Neurosurg. 2009;111(4):863–73.Google Scholar
  40. 40.
    Roos DE, Potter AE, Brophy BP. Stereotactic radiosurgery for acoustic neuromas: what happens long term? Int J Radiat Oncol Biol Phys. 2012;82(4):1352–5.Google Scholar
  41. 41.
    Jacob JT, Carlson ML, Schiefer TK, et al. Significance of cochlear dose in the radiosurgical treatment of vestibular schwannoma: controversies and unanswered questions. Neurosurgery. 2014;74(5):466–74; discussion 474.Google Scholar
  42. 42.
    Pollock BE. Management of vestibular schwannomas that enlarge after stereotactic radiosurgery: treatment recommendations based on a 15 year experience. Neurosurgery. 2006;58(2):241–8; discussion 241–8.Google Scholar
  43. 43.
    Yang I, Sughrue ME, Han SJ, et al. A comprehensive analysis of hearing preservation after radiosurgery for vestibular schwannoma. J Neurosurg. 2010;112(4):851–9.Google Scholar
  44. 44.
    Tanbouzi Husseini S, Piccirillo E, Taibah A, et al. Malignancy in vestibular schwannoma after stereotactic radiotherapy: a case report and review of the literature. Laryngoscope. 2011;121(5):923–8.Google Scholar
  45. 45.
    Link MJ, Cohen PL, Breneman JC, et al. Malignant squamous degeneration of a cerebellopontine angle epidermoid tumor. Case report. J Neurosurg. 2002;97(5):1237–43.Google Scholar
  46. 46.
    Niu NN, Niemierko A, Larvie M, et al. Pretreatment growth rate predicts radiation response in vestibular schwannomas. Int J Radiat Oncol Biol Phys. 2014;89(1):113–9.Google Scholar
  47. 47.
    Shin M, Ueki K, Kurita H, et al. Malignant transformation of a vestibular schwannoma after gamma knife radiosurgery. Lancet. 2002;360(9329):309–10.Google Scholar
  48. 48.
    Muracciole X, Regis J. Radiosurgery and carcinogenesis risk. Prog Neurol Surg. 2008;21:207–13.Google Scholar
  49. 49.
    Chopra R, Kondziolka D, Niranjan A, et al. Long-term follow-up of acoustic schwannoma radiosurgery with marginal tumor doses of 12 to 13 Gy. Int J Radiat Oncol Biol Phys. 2007;68(3):845–51.Google Scholar
  50. 50.
    Fukuoka S, Takanashi M, Hojyo A, et al. Gamma knife radiosurgery for vestibular schwannomas. Prog Neurol Surg. 2009;22:45–62.Google Scholar
  51. 51.
    Sun S, Liu A. Long-term follow-up studies of Gamma Knife surgery with a low margin dose for vestibular schwannoma. J Neurosurg. 2012;117(Suppl):57–62.Google Scholar
  52. 52.
    Yomo S, Carron R, Thomassin JM, et al. Longitudinal analysis of hearing before and after radiosurgery for vestibular schwannoma. J Neurosurg. 2012;117(5):877–85.Google Scholar
  53. 53.
    Weber DC, Chan AW, Bussiere MR, et al. Proton beam radiosurgery for vestibular schwannoma: tumor control and cranial nerve toxicity. Neurosurgery. 2003;53(3):577–86; discussion 586–8.Google Scholar
  54. 54.
    Aoyama H, Onodera S, Takeichi N, et al. Symptomatic outcomes in relation to tumor expansion after fractionated stereotactic radiation therapy for vestibular schwannomas: single-institutional long-term experience. Int J Radiat Oncol Biol Phys. 2013;85(2):329–34.Google Scholar
  55. 55.
    Litre F, Rousseaux P, Jovenin N, et al. Fractionated stereotactic radiotherapy for acoustic neuromas: a prospective monocenter study of about 158 cases. Radiother Oncol. 2013;106(2):169–74.Google Scholar
  56. 56.
    Combs SE, Engelhard C, Kopp C, et al. Long-term outcome after highly advanced single-dose or fractionated radiotherapy in patients with vestibular schwannomas - pooled results from 3 large German centers. Radiother Oncol. 2015;114(3):378–83.Google Scholar
  57. 57.
    Song DY, Williams JA. Fractionated stereotactic radiosurgery for treatment of acoustic neuromas. Stereotact Funct Neurosurg. 1999;73(1–4):45–9.Google Scholar
  58. 58.
    Lederman G, Lowry J, Wertheim S, et al. Acoustic neuroma: potential benefits of fractionated stereotactic radiosurgery. Stereotact Funct Neurosurg. 1997;69(1–4 Pt 2):175–82.Google Scholar
  59. 59.
    Gormley WB, Sekhar LN, Wright DC, et al. Acoustic neuromas: results of current surgical management. Neurosurgery. 1997;41(1):50–8; discussion 58–60.Google Scholar
  60. 60.
    Myrseth E, Møller P, Pedersen PH, et al. Vestibular schwannomas: clinical results and quality of life after microsurgery or gamma knife radiosurgery. Neurosurgery. 2005;56(5):927–35; discussion 927–35.Google Scholar
  61. 61.
    Sawamura Y, Shirato H, Sakamoto T, et al. Management of vestibular schwannoma by fractionated stereotactic radiotherapy and associated cerebrospinal fluid malabsorption. J Neurosurg. 2003;99(4):685–92.Google Scholar
  62. 62.
    Noren G, Arndt J, Hindmarsh T. Stereotactic radiosurgery in cases of acoustic neurinoma: further experiences. Neurosurgery. 1983;13(1):12–22.Google Scholar
  63. 63.
    Kondziolka D, Nathoo N, Flickinger JC, et al. Long-term results after radiosurgery for benign intracranial tumors. Neurosurgery. 2003;53(4):815–21; discussion 821–2.Google Scholar
  64. 64.
    Flickinger JC, Lunsford LD, Linskey ME, et al. Gamma knife radiosurgery for acoustic tumors: multivariate analysis of four year results. Radiother Oncol. 1993;27(2):91–8.Google Scholar
  65. 65.
    Foote RL, Coffey RJ, Swanson JW, et al. Stereotactic radiosurgery using the gamma knife for acoustic neuromas. Int J Radiat Oncol Biol Phys. 1995;32(4):1153–60.Google Scholar
  66. 66.
    Kondziolka D, Lunsford LD, McLaughlin MR, et al. Long-term outcomes after radiosurgery for acoustic neuromas. N Engl J Med. 1998;339(20):1426–33.Google Scholar
  67. 67.
    Mendenhall WM, Friedman WA, Buatti JM, et al. Preliminary results of linear accelerator radiosurgery for acoustic schwannomas. J Neurosurg. 1996;85(6):1013–9.Google Scholar
  68. 68.
    Anderson BM, Khuntia D, Bentzen SM, et al. Single institution experience treating 104 vestibular schwannomas with fractionated stereotactic radiation therapy or stereotactic radiosurgery. J Neurooncol. 2014;116(1):187–93.Google Scholar
  69. 69.
    Meijer OW, Wolbers JG, Baayen JC, et al. Fractionated stereotactic radiation therapy and single high-dose radiosurgery for acoustic neuroma: early results of a prospective clinical study. Int J Radiat Oncol Biol Phys. 2000;46(1):45–9.Google Scholar
  70. 70.
    Hansasuta A, Choi CY, Gibbs IC, et al. Multisession stereotactic radiosurgery for vestibular schwannomas: single-institution experience with 383 cases. Neurosurgery. 2011;69(6):1200–9.Google Scholar
  71. 71.
    Suit H, DeLaney T, Goldberg S, et al. Proton vs carbon ion beams in the definitive radiation treatment of cancer patients. Radiother Oncol. 2010;95(1):3–22.Google Scholar
  72. 72.
    Harsh GR, Thornton AF, Chapman PH, et al. Proton beam stereotactic radiosurgery of vestibular schwannomas. Int J Radiat Oncol Biol Phys. 2002;54(1):35–44.Google Scholar
  73. 73.
    Bush DA, McAllister CJ, Loredo LN, et al. Fractionated proton beam radiotherapy for acoustic neuroma. Neurosurgery. 2002;50(2):270–3; discussion 273–5.Google Scholar
  74. 74.
    Agrawal Y, Clark JH, Limb CJ, et al. Predictors of vestibular schwannoma growth and clinical implications. Otol Neurotol. 2010;31(5):807–12.Google Scholar
  75. 75.
    Fenton JE, Chin RY, Fagan PA, et al. Facial nerve outcome in non-vestibular schwannoma tumour surgery. Acta Otorhinolaryngol Belg. 2004;58(2):103–7.Google Scholar
  76. 76.
    Rivas A, Boahene KD, Bravo HC, et al. A model for early prediction of facial nerve recovery after vestibular schwannoma surgery. Otol Neurotol. 2011;32(5):826–33.Google Scholar
  77. 77.
    Isaacson B, Kileny PR, El-Kashlan H, et al. Intraoperative monitoring and facial nerve outcomes after vestibular schwannoma resection. Otol Neurotol. 2003;24(5):812–7.Google Scholar
  78. 78.
    Gjuric M, Mitrecic MZ, Greess H, et al. Vestibular schwannoma volume as a predictor of hearing outcome after surgery. Otol Neurotol. 2007;28(6):822–7.Google Scholar
  79. 79.
    Irving RM, Jackler RK, Pitts LH. Hearing preservation in patients undergoing vestibular schwannoma surgery: comparison of middle fossa and retrosigmoid approaches. J Neurosurg. 1998;88(5):840–5.Google Scholar
  80. 80.
    Massager N, Nissim O, Delbrouck C, et al. Irradiation of cochlear structures during vestibular schwannoma radiosurgery and associated hearing outcome. J Neurosurg. 2007;107(4):733–9.Google Scholar
  81. 81.
    Thomas C, Di Maio S, Ma R, et al. Hearing preservation following fractionated stereotactic radiotherapy for vestibular schwannomas: prognostic implications of cochlear dose. J Neurosurg. 2007;107(5):917–26.Google Scholar
  82. 82.
    Chan AW, Black P, Ojemann RG, et al. Stereotactic radiotherapy for vestibular schwannomas: favorable outcome with minimal toxicity. Neurosurgery. 2005;57(1):60–70; discussion 60–70.Google Scholar
  83. 83.
    Pollock BE, Driscoll CL, Foote RL, et al. Patient outcomes after vestibular schwannoma management: a prospective comparison of microsurgical resection and stereotactic radiosurgery. Neurosurgery. 2006;59(1):77–85; discussion 77–85.Google Scholar
  84. 84.
    Doherty JK, Friedman RA. Controversies in building a management algorithm for vestibular schwannomas. Curr Opin Otolaryngol Head Neck Surg. 2006;14(5):305–13.Google Scholar
  85. 85.
    Tamura M, Carron R, Yomo S, et al. Hearing preservation after gamma knife radiosurgery for vestibular schwannomas presenting with high-level hearing. Neurosurgery. 2009;64(2):289–96; discussion 296.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiation Oncology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  2. 2.Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS)Helmholtz Zentrum MünchenOberschleißheimGermany

Personalised recommendations