Skip to main content

Metastatic Epidural Spinal Cord Compression: Conventional Radiotherapy

  • Chapter
  • First Online:
Book cover Adult CNS Radiation Oncology
  • 1954 Accesses

Abstract

Metastatic epidural spinal cord compression (MESCC) is an oncologic emergency that requires prompt treatment. MESCC is most commonly treated with radiotherapy with or without corticosteroids. Upfront decompressive surgery may be used for selected patients with a good performance status and a relatively favorable survival prognosis. For radiotherapy, several dose-fractionation regimens are available ranging from a single fraction of 8–10 Gy to multi-fraction long-course programs such as 30 Gy in 10 fractions or 40 Gy in 20 fractions. The most appropriate regimen for an individual patient depends on the treatment goals and the patient’s expected life span. With respect to improvement of motor function specifically maintaining or regaining the ability to walk, a single fraction of 8 Gy is as effective as longer-course programs. Longer-course programs provide better local control of MESCC than single-fraction and multi-fraction short-course programs (e.g., 20 Gy in five fractions). Since the risk of a recurrence of MESCC in the same area of the spine increases with life span, patients with a better survival prognosis appear better treated with longer-course radiotherapy. Patients with a very favorable prognosis might even benefit from dose-fractionation regimens with total doses >30 Gy. Thus, for optimal personalization of radiotherapy in patients with MESCC, it is important to estimate a patient’s remaining life span. This is facilitated with survival scores available for MESCC in general and specifically for several primary tumors associated with MESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spiller WG. Rapidly progressive paralysis associated with carcinoma. AMA Arch Neurol Psychiatry. 1925;13:471–7.

    Article  Google Scholar 

  2. Rades D, Abrahm JL. The role of radiotherapy for metastatic epidural spinal cord compression. Nat Rev Clin Oncol. 2010;7:590–8.

    Article  PubMed  Google Scholar 

  3. Loblaw DA, Laperriere NJ, Mackillop WJ. A population-based study of malignant spinal cord compression in Ontario. Clin Oncol. 2003;15:211–7.

    Article  CAS  Google Scholar 

  4. Prasad D, Schiff D. Malignant spinal-cord compression. Lancet Oncol. 2005;6:15–24.

    Article  PubMed  Google Scholar 

  5. Ushio Y, Posner R, Posner JB, et al. Experimental spinal cord compression by epidural neoplasms. Neurology. 1977;27:422–9.

    Article  CAS  PubMed  Google Scholar 

  6. Kato A, Ushio Y, Hayakawa T, et al. Circulatory disturbance of the spinal cord with epidural neoplasms in rats. J Neurosurg. 1985;63:260–5.

    Article  CAS  PubMed  Google Scholar 

  7. Manabe S, Tanaka H, Hogo Y, et al. Experimental analysis of the spinal cord compressed by spinal metastasis. Spine. 1989;14:1308–15.

    Article  CAS  PubMed  Google Scholar 

  8. Tarlov I, Klinger H, Vitale S. Spinal cord compression studies: I. Experimental techniques to produce acute and gradual compression. AMA Arch Neurol Psychiatry. 1953;70:813–9.

    Article  CAS  PubMed  Google Scholar 

  9. Tarlov I, Klinger H. Spinal cord compression studies: II. Time limits for recovery after acute compression in dogs. AMA Arch Neurol Psychiatry. 1954;71:271–90.

    Article  CAS  PubMed  Google Scholar 

  10. Rades D, Heidenreich F, Bremer M, et al. Time of developing motor deficits before radiotherapy as a new and relevant prognostic factor in metastatic spinal cord compression: final results of a retrospective analysis. Eur Neurol. 2001;45:266–9.

    Article  CAS  PubMed  Google Scholar 

  11. Rades D, Heidenreich F, Karstens JH. Final results of a prospective study of the prognostic value of the time to develop motor deficits before irradiation in metastatic spinal cord compression. Int J Radiat Oncol Biol Phys. 2002;53:975–9.

    Article  PubMed  Google Scholar 

  12. Gilbert RW, Kim JH, Posner RB. Epidural spinal cord compression from metastatic tumor: diagnosis and treatment. Ann Neurol. 1978;3:40–51.

    Article  CAS  PubMed  Google Scholar 

  13. Bach F, Larsen BH, Rohde K, et al. Metastatic spinal cord compression. Occurrence, symptoms, clinical presentations, and prognosis in 398 patients with spinal cord compression. Acta Neurochir. 1990;107:37–43.

    Article  CAS  PubMed  Google Scholar 

  14. Kovner F, Spigel S, Rider I, et al. Radiation therapy of metastatic spinal cord compression. Multidisciplinary team diagnosis and treatment. J Neurooncol. 1999;42:85–92.

    Article  CAS  PubMed  Google Scholar 

  15. Helweg-Larsen S, Sørensen PS, Kreiner S. Prognostic factors in metastatic spinal cord compression: a prospective study using multivariate analysis of variables influencing survival and gait function in 153 patients. Int J Radiat Oncol Biol Phys. 2000;46:1163–9.

    Article  CAS  PubMed  Google Scholar 

  16. Maranzano E, Latini P. Effectiveness of radiation therapy without surgery in metastatic spinal cord compression: final results from a prospective trial. Int J Radiat Oncol Biol Phys. 1995;32:959–67.

    Article  CAS  PubMed  Google Scholar 

  17. Husband DJ. Malignant spinal cord compression: prospective study of delays in referral and treatment. BMJ. 1998;317:18–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tomita T, Galicich JH, Sundaresan N. Radiation therapy for spinal epidural metastases with complete block. Acta Radiol Oncol. 1983;22:135–43.

    Article  CAS  PubMed  Google Scholar 

  19. Baskin DS. Spinal cord injury. In: Ewans RW, editor. Neurology and trauma. Philadelphia: Saunders; 1996. p. 276–99.

    Google Scholar 

  20. Li KC, Poon PY. Sensitivity and specificity of MRI in detecting malignant spinal cord compression and in distinguishing malignant from benign compression fractures of vertebrae. Magn Reson Imaging. 1988;6:547–56.

    Article  CAS  PubMed  Google Scholar 

  21. Colletti PM, Siegel HJ, Woo MY, et al. The impact on treatment planning of MRI of the spine in patients suspected of vertebral metastasis: an efficacy study. Comput Med Imaging Graph. 1996;20:159–62.

    Article  CAS  PubMed  Google Scholar 

  22. Rades D, Bremer M, Goehde S, et al. Spondylodiscitis in patients with spinal cord compression: a possible pitfall in radiation oncology. Radiother Oncol. 2001;59:307–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kim RY, Smith JW, Spencer SA, et al. Malignant epidural spinal cord compression associated with a paravertebral mass: its radiotherapeutic outcome on radiosensitivity. Int J Radiat Oncol Biol Phys. 1993;27:1079–83.

    Article  CAS  PubMed  Google Scholar 

  24. Leviov M, Dale J, Stein M, et al. The management of metastatic spinal cord compression: a radiotherapeutic success ceiling. Int J Radiat Oncol Biol Phys. 1993;27:231–4.

    Article  CAS  PubMed  Google Scholar 

  25. Rades D, Stalpers LJ, Veninga T, et al. Evaluation of five radiation schedules and prognostic factors for metastatic spinal cord compression. J Clin Oncol. 2005;23:3366–75.

    Article  PubMed  Google Scholar 

  26. Rades D, Rudat V, Veninga T, et al. A score predicting posttreatment ambulatory status in patients irradiated for metastatic spinal cord compression. Int J Radiat Oncol Biol Phys. 2008;72:905–8.

    Article  PubMed  Google Scholar 

  27. Rades D, Douglas S, Huttenlocher S, et al. Validation of a score predicting post-treatment ambulatory status after radiotherapy for metastatic spinal cord compression. Int J Radiat Oncol Biol Phys. 2011;79:1503–6.

    Article  PubMed  Google Scholar 

  28. Rades D, Fehlauer F, Schulte R, et al. Prognostic factors for local control and survival after radiotherapy of metastatic spinal cord compression. J Clin Oncol. 2006;24:3388–93.

    Article  PubMed  Google Scholar 

  29. Rades D, Dunst J, Schild SE. The first score predicting overall survival in patients with metastatic spinal cord compression. Cancer. 2008;112:157–61.

    Article  PubMed  Google Scholar 

  30. Rades D, Douglas S, Veninga T, et al. Validation and simplification of a score predicting survival in patients irradiated for metastatic spinal cord compression. Cancer. 2010;116:3670–3.

    Article  PubMed  Google Scholar 

  31. Rades D, Douglas S, Schild SE. A validated survival score for breast cancer patients with metastatic spinal cord compression. Strahlenther Onkol. 2013;189:41–6.

    Article  CAS  PubMed  Google Scholar 

  32. Rades D, Douglas S, Veninga T, et al. A survival score for patients with metastatic spinal cord compression from prostate cancer. Strahlenther Onkol. 2012;188:802–6.

    Article  CAS  PubMed  Google Scholar 

  33. Rades D, Douglas S, Veninga T, et al. A validated survival score for patients with metastatic spinal cord compression from non-small cell lung cancer. BMC Cancer. 2012;12:302.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Douglas S, Schild SE, Rades D. A new score predicting the survival of patients with spinal cord compression from myeloma. BMC Cancer. 2012;12:425.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Douglas S, Schild SE, Rades D. Metastatic spinal cord compression in patients with cancer of unknown primary. Estimating the survival prognosis with a validated score. Strahlenther Onkol. 2012;188:1048–51.

    Article  CAS  PubMed  Google Scholar 

  36. Rades D, Douglas S, Veninga T, et al. Prognostic factors and a survival score for patients with metastatic spinal cord compression (MSCC) from renal cell carcinoma (RCC). Australasian J Cancer. 2012;11:169–74.

    Google Scholar 

  37. Rades D, Douglas S, Huttenlocher S, et al. Prognostic factors and a survival score for patients with metastatic spinal cord compression from colorectal cancer. Strahlenther Onkol. 2012;188:1114–8.

    Article  CAS  PubMed  Google Scholar 

  38. Amar AP, Levy ML. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery. 1999;44:1027–40.

    Article  CAS  PubMed  Google Scholar 

  39. Sørensen PS, Helweg-Larsen S, Mouridsen H, et al. Effect of high-dose dexamethasone in carcinomatous metastatic spinal cord compression treated with radiotherapy: a randomized trial. Eur J Cancer. 1994;30A:22–7.

    Article  PubMed  Google Scholar 

  40. Heimdal K, Hirschberg H, Slettebo H, et al. High incidence of serious side effects of high-dose dexamethasone treatment in patients with epidural spinal cord compression. J Neurooncol. 1992;12:141–4.

    Article  CAS  PubMed  Google Scholar 

  41. Saad F, Gleason DM, Murrey R, et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst. 2002;94:1458–68.

    Article  CAS  PubMed  Google Scholar 

  42. Saad F, Gleason DM, Murray R, et al. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst. 2004;96:879–82.

    Article  CAS  PubMed  Google Scholar 

  43. Rades D, Lange M, Veninga T, et al. Final results of a prospective study comparing the local control of short-course and long-course radiotherapy for metastatic spinal cord compression. Int J Radiat Oncol Biol Phys. 2011;79:524–30.

    Article  PubMed  Google Scholar 

  44. Rades D, Hakim SG, Bajrovic A, et al. Impact of zoledronic acid on control of metastatic spinal cord compression. Strahlenther Onkol. 2012;188:910–6.

    Article  CAS  PubMed  Google Scholar 

  45. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350:1655–64.

    Article  CAS  PubMed  Google Scholar 

  46. Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28:5132–9.

    Article  CAS  PubMed  Google Scholar 

  47. Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377:813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Henry DH, Costa L, Goldwasser F, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29:1125–32.

    Article  CAS  PubMed  Google Scholar 

  49. Aviles A, Fernandez R, Gonzalez JL, et al. Spinal cord compression as a primary manifestation of aggressive malignant lymphomas: long-term analysis of treatments with radiotherapy, chemotherapy or combined therapy. Leuk Lymphoma. 2002;43:355–9.

    Article  PubMed  Google Scholar 

  50. Wallington M, Mendis S, Premawardhana U, et al. Local control and survival in spinal cord compression from lymphoma and myeloma. Radiother Oncol. 1997;42:43–7.

    Article  CAS  PubMed  Google Scholar 

  51. Patchell R, Tibbs PA, Regine WF, et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005;366:643–8.

    Article  PubMed  Google Scholar 

  52. Yen D, Kuriachan V, Yach J, et al. Long-term outcome of anterior decompression and spinal fixation after placement of the Welesley Wedge for thoracic and lumbar spinal metastasis. J Neurosurg. 2002;96(Suppl 1):6–9.

    PubMed  Google Scholar 

  53. Klimo P Jr, Dailey AT, Fessler RG. Posterior surgical approaches and outcomes in metastatic spine-disease. Neurosurg Clin N Am. 2004;15:425–35.

    Article  PubMed  Google Scholar 

  54. Young RF, Post EM, King GA. Treatment of spinal epidural metastases. Randomized prospective comparison of laminectomy and radiotherapy. J Neurosurg. 1980;53:741–8.

    Article  CAS  PubMed  Google Scholar 

  55. Sørensen PS, Borgesen SE, Rohde K, et al. Metastatic epidural spinal cord compression: results of treatment and survival. Cancer. 1990;65:1502–8.

    Article  PubMed  Google Scholar 

  56. Klimo P Jr, Kestle JR, Schmidt MH. Treatment of metastatic spinal epidural disease: a review of the literature. Neurosurg Focus. 2003;15:E1.

    PubMed  Google Scholar 

  57. Klimo P Jr, Thompson CJ, Kestle JR, et al. A meta-analysis of surgery versus conventional radiotherapy for the treatment of metastatic spinal epidural disease. Neuro Oncol. 2005;7:64–76.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kunkler I. Surgical resection in metastatic spinal cord compression. Lancet. 2006;367:109.

    Article  PubMed  Google Scholar 

  59. Knisely J, Strugar J. Can decompressive surgery improve outcome in patients with metastatic epidural spinal-cord compression? Nat Clin Pract Oncol. 2006;3:14–5.

    Article  PubMed  Google Scholar 

  60. Rades D, Huttenlocher S, Dunst J, et al. Matched pair analysis comparing surgery followed by radiotherapy and radiotherapy alone for metastatic spinal cord compression. J Clin Oncol. 2010;28:3597–604.

    Article  PubMed  Google Scholar 

  61. Rades D, Huttenlocher S, Bajrovic A, et al. Surgery followed by radiotherapy versus radiotherapy alone for metastatic spinal cord compression from unfavorable tumors. Int J Radiat Oncol Biol Phys. 2011;81:e861–8.

    Article  PubMed  Google Scholar 

  62. Joiner MC, Van der Kogel AJ. The linear-quadratic approach to fractionation and calculation of isoeffect relationships. In: Steel GG, editor. Basic clinical radiobiology. New York: Oxford University Press; 1997. p. 106–12.

    Google Scholar 

  63. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21:109–22.

    Article  CAS  PubMed  Google Scholar 

  64. Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Maranzano E, Latini P, Beneventi S, et al. Comparison of two different radiotherapy schedules for spinal cord compression in prostate cancer. Tumori. 1998;84:472–7.

    Article  CAS  PubMed  Google Scholar 

  66. Rades D, Fehlauer F, Stalpers LJA, et al. A prospective evaluation of two radiation schedules with 10 versus 20 fractions for the treatment of metastatic spinal cord compression: final results of a multi-center study. Cancer. 2004;101:2687–92.

    Article  PubMed  Google Scholar 

  67. Maranzano E, Bellavita R, Rossi R, et al. Short-course versus split-course radiotherapy in metastatic spinal cord compression: results of a phase III, randomized, multicenter trial. J Clin Oncol. 2005;23:3358–65.

    Article  PubMed  Google Scholar 

  68. Maranzano E, Trippa F, Casale M, et al. 8Gy single-dose radiotherapy is effective in metastatic spinal cord compression: results of a phase III randomized multicentre Italian trial. Radiother Oncol. 2009;93:174–9.

    Article  PubMed  Google Scholar 

  69. Rades D, Šegedin B, Conde-Moreno AJ, et al. Radiotherapy with 4 Gy × 5 versus 3 Gy × 10 for metastatic epidural spinal cord compression: final results of the SCORE-2 trial (ARO 2009/01). J Clin Oncol. 2016;34:597–602.

    Article  CAS  PubMed  Google Scholar 

  70. Rades D, Panzner A, Rudat V, et al. Dose escalation of radiotherapy for metastatic spinal cord compression (MSCC) in patients with relatively favorable survival prognosis. Strahlenther Onkol. 2011;187:729–35.

    Article  PubMed  Google Scholar 

  71. Rades D, Stalpers LJ, Veninga T, et al. Spinal reirradiation after short-course RT for metastatic spinal cord compression. Int J Radiat Oncol Biol Phys. 2005;63:872–5.

    Article  PubMed  Google Scholar 

  72. Nieder C, Grosu AL, Andratschke NH, et al. Update of human spinal cord reirradiation tolerance based on additional data from 38 patients. Int J Radiat Oncol Biol Phys. 2006;66:1446–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rades, D., Schild, S.E. (2018). Metastatic Epidural Spinal Cord Compression: Conventional Radiotherapy. In: Chang, E., Brown, P., Lo, S., Sahgal, A., Suh, J. (eds) Adult CNS Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-42878-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42878-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42877-2

  • Online ISBN: 978-3-319-42878-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics