Strategies for Risk Reduction and Improving Success in Women with Medical Comorbidities

  • Alison RichardsonEmail author
  • Scott M. Nelson


Women with medical comorbidities embarking on IVF are at increased risk of complications and efforts must be made to ensure that these are kept to a minimum. Essentially this involves manipulating the IVF cycle in such a way so as to reduce the risk of ovarian hyperstimulation syndrome and multiple pregnancy. The safest way of conducting an IVF cycle in women with medical comorbidities therefore is to utilize an antagonist stimulation protocol with a relatively low dose of FSH, use a GnRH agonist trigger, cryopreserve all embryos and then electively transfer a single embryo as part of a frozen embryo replacement cycle. Although this segmented approach may detract from the overall success rates, compromising any element of this strategy will incorporate an unacceptable and unnecessary risk to women with medical comorbidities.


GnRH antagonist GnRH agonist trigger Single embryo transfer Frozen embryo replacement cycle 


  1. 1.
    La Marca A, et al. Age-specific nomogram for the decline in antral follicle count throughout the reproductive period. Fertil Steril. 2011;95(2):684–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Nelson SM, et al. Reference range for the antimullerian hormone Generation II assay: a population study of 10,984 women, with comparison to the established Diagnostics Systems Laboratory nomogram. Fertil Steril. 2014;101(2):523–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Chang MY, et al. Use of the antral follicle count to predict the outcome of assisted reproductive technologies. Fertil Steril. 1998;69(3):505–10.CrossRefPubMedGoogle Scholar
  4. 4.
    Nelson SM, Yates RW, Fleming R. Serum anti-Mullerian hormone and FSH: prediction of live birth and extremes of response in stimulated cycles – implications for individualization of therapy. Hum Reprod. 2007;22(9):2414–21.CrossRefPubMedGoogle Scholar
  5. 5.
    Broer SL, et al. AMH and AFC as predictors of excessive response in controlled ovarian hyperstimulation: a meta-analysis. Hum Reprod Update. 2011;17(1):46–54.CrossRefPubMedGoogle Scholar
  6. 6.
    Broer SL, et al. The role of antimullerian hormone in prediction of outcome after IVF: comparison with the antral follicle count. Fertil Steril. 2009;91(3):705–14.CrossRefPubMedGoogle Scholar
  7. 7.
    Iliodromiti S, Anderson RA, Nelson SN. Technical and performance characteristics of anti-Mullerian hormone and antral follicle count as biomarkers of ovarian response. Hum Reprod Update. 2015;21(6):698–710.CrossRefPubMedGoogle Scholar
  8. 8.
    Macklon NS, et al. The science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr Rev. 2006;27(2):170–207.CrossRefPubMedGoogle Scholar
  9. 9.
    Fauser BC, et al. Mild ovarian stimulation for IVF: 10 years later. Hum Reprod. 2010;25(11):2678–84.CrossRefPubMedGoogle Scholar
  10. 10.
    Nelson SM, et al. Anti-Mullerian hormone-based approach to controlled ovarian stimulation for assisted conception. Hum Reprod. 2009;24(4):867–75.CrossRefPubMedGoogle Scholar
  11. 11.
    Nelson SM. Biomarkers of ovarian response: current and future applications. Fertil Steril. 2013;99(4):963–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Al-Inany HG, et al. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology. Cochrane Database Syst Rev. 2011;(5):CD001750.Google Scholar
  13. 13.
    Damewood MD, et al. Disappearance of exogenously administered human chorionic gonadotropin. Fertil Steril. 1989;52(3):398–400.CrossRefPubMedGoogle Scholar
  14. 14.
    Yen SS, et al. Disappearance rates of endogenous luteinizing hormone and chorionic gonadotropin in man. J Clin Endocrinol Metab. 1968;28(12):1763–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Delvigne A, Rozenberg S. Epidemiology and prevention of ovarian hyperstimulation syndrome (OHSS): a review. Hum Reprod Update. 2002;8(6):559–77.CrossRefPubMedGoogle Scholar
  16. 16.
    Fauser BC, et al. Endocrine profiles after triggering of final oocyte maturation with GnRH agonist after cotreatment with the GnRH antagonist ganirelix during ovarian hyperstimulation for in vitro fertilization. J Clin Endocrinol Metab. 2002;87(2):709–15.CrossRefPubMedGoogle Scholar
  17. 17.
    Humaidan P, et al. GnRH agonist (buserelin) or hCG for ovulation induction in GnRH antagonist IVF/ICSI cycles: a prospective randomized study. Hum Reprod. 2005;20(5):1213–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Kolibianakis EM, et al. A lower ongoing pregnancy rate can be expected when GnRH agonist is used for triggering final oocyte maturation instead of HCG in patients undergoing IVF with GnRH antagonists. Hum Reprod. 2005;20(10):2887–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Humaidan P, et al. Rescue of corpus luteum function with peri-ovulatory HCG supplementation in IVF/ICSI GnRH antagonist cycles in which ovulation was triggered with a GnRH agonist: a pilot study. Reprod Biomed Online. 2006;13(2):173–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Humaidan P, et al. 1,500 IU human chorionic gonadotropin administered at oocyte retrieval rescues the luteal phase when gonadotropin-releasing hormone agonist is used for ovulation induction: a prospective, randomized, controlled study. Fertil Steril. 2010;93(3):847–54.CrossRefPubMedGoogle Scholar
  21. 21.
    Pirard C, Donnez J, Loumaye E. GnRH agonist as luteal phase support in assisted reproduction technique cycles: results of a pilot study. Hum Reprod. 2006;21(7):1894–900.CrossRefPubMedGoogle Scholar
  22. 22.
    Papanikolaou EG, et al. A novel method of luteal supplementation with recombinant luteinizing hormone when a gonadotropin-releasing hormone agonist is used instead of human chorionic gonadotropin for ovulation triggering: a randomized prospective proof of concept study. Fertil Steril. 2011;95(3):1174–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Engmann L, et al. The use of gonadotropin-releasing hormone (GnRH) agonist to induce oocyte maturation after cotreatment with GnRH antagonist in high-risk patients undergoing in vitro fertilization prevents the risk of ovarian hyperstimulation syndrome: a prospective randomized controlled study. Fertil Steril. 2008;89(1):84–91.CrossRefPubMedGoogle Scholar
  24. 24.
    Hernandez ER, Gomez-Palomares JL, Ricciarelli E. No room for cancellation, coasting, or ovarian hyperstimulation syndrome in oocyte donation cycles. Fertil Steril. 2009;91(4 Suppl):1358–61.CrossRefPubMedGoogle Scholar
  25. 25.
    Bodri D, et al. Triggering with human chorionic gonadotropin or a gonadotropin-releasing hormone agonist in gonadotropin-releasing hormone antagonist-treated oocyte donor cycles: findings of a large retrospective cohort study. Fertil Steril. 2009;91(2):365–71.CrossRefPubMedGoogle Scholar
  26. 26.
    Amso NN, et al. The management of predicted ovarian hyperstimulation involving gonadotropin-releasing hormone analog with elective cryopreservation of all pre-embryos. Fertil Steril. 1990;53(6):1087–90.CrossRefPubMedGoogle Scholar
  27. 27.
    D’Angelo A, Amso N. Embryo freezing for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev. 2012;(3):CD002806.Google Scholar
  28. 28.
    Awonuga AO, et al. Elective cryopreservation of all embryos in women at risk of developing ovarian hyperstimulation syndrome may not prevent the condition but reduces the live birth rate. J Assist Reprod Genet. 1996;13(5):401–6.CrossRefPubMedGoogle Scholar
  29. 29.
    van der Linden M, et al. Luteal phase support for assisted reproduction cycles. Cochrane Database Syst Rev. 2011;(10):CD009154.Google Scholar
  30. 30.
    D’Angelo A, Amso N. “Coasting” (withholding gonadotrophins) for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev. 2002;(3):CD002811.Google Scholar
  31. 31.
    Delvigne A, Rozenberg S. A qualitative systematic review of coasting, a procedure to avoid ovarian hyperstimulation syndrome in IVF patients. Hum Reprod Update. 2002;8(3):291–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Forman RG, et al. Severe ovarian hyperstimulation syndrome using agonists of gonadotropin-releasing hormone for in vitro fertilization: a European series and a proposal for prevention. Fertil Steril. 1990;53(3):502–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Egbase PE, Sharhan MA, Grudzinskas JG. Early unilateral follicular aspiration compared with coasting for the prevention of severe ovarian hyperstimulation syndrome: a prospective randomized study. Hum Reprod. 1999;14(6):1421–5.CrossRefPubMedGoogle Scholar
  34. 34.
    Tang H, et al. Cabergoline for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev. 2012;(2):CD008605.Google Scholar
  35. 35.
    Tso LO, et al. Metformin treatment before and during IVF or ICSI in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2014;(11):CD006105.Google Scholar
  36. 36.
    Aboulghar M, Evers JH, Al-Inany H. Intravenous albumin for preventing severe ovarian hyperstimulation syndrome: a Cochrane review. Hum Reprod. 2002;17(12):3027–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Edwards RG. IVF, IVM, natural cycle IVF, minimal stimulation IVF – time for a rethink. Reprod Biomed Online. 2007;15(1):106–19.CrossRefPubMedGoogle Scholar
  38. 38.
    Edwards RG. Are minimal stimulation IVF and IVM set to replace routine IVF? Reprod Biomed Online. 2007;14(2):267–70.CrossRefPubMedGoogle Scholar
  39. 39.
    Thurin A, et al. Elective single-embryo transfer versus double-embryo transfer in in vitro fertilization. N Engl J Med. 2004;351(23):2392–402.CrossRefPubMedGoogle Scholar
  40. 40.
    Lawlor DA, Nelson SM. Effect of age on decisions about the numbers of embryos to transfer in assisted conception: a prospective study. Lancet. 2012;379(9815):521–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Hardarson T, Van Landuyt L, Jones G. The blastocyst. Hum Reprod. 2012;27 Suppl 1:i72–91.CrossRefPubMedGoogle Scholar
  42. 42.
    Fishel S, et al. Live birth after polar body array comparative genomic hybridization prediction of embryo ploidy-the future of IVF? Fertil Steril. 2010;93(3):1006.e7–10.CrossRefGoogle Scholar
  43. 43.
    Ata B, et al. Array CGH analysis shows that aneuploidy is not related to the number of embryos generated. Reprod Biomed Online. 2012;24(6):614–20.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Division of Child Health, Obstetrics, and Gynaecology, School of MedicineUniversity of NottinghamNottinghamUK
  2. 2.School of Medicine, Glasgow Royal InfirmaryUniversity of GlasgowGlasgowUK

Personalised recommendations