Fetal Complications During Pregnancy

  • Catherine E. M. Aiken
  • Jeremy BrockelsbyEmail author


There have now been over five million births worldwide following the use of assisted reproductive technology (ART) and the rates of assisted conceptions continue to rise. Hence any increase in adverse fetal outcomes resulting from the use of this technology constitutes a significant public health issue. While some perinatal complications are more common in fetuses conceived using ART, difficulties arise in many studies with defining the risk of complications that is attributable to the process of ART itself. There are a number of important confounding factors that may well contribute to adverse outcomes including the high incidence of multiple pregnancies, the reasons for the underlying subfertility, poor gamete quality, and advanced maternal age. Fetal complications that are more common in pregnancies conceived using ART arise via a number of distinct mechanisms. There are those derived from the conceptus itself, which include chromosomal, genetic and imprinted disorders that can impact on fetal development. There are those that arise from placental anomalies, leading to iatrogenic preterm delivery particularly placenta praevia. The most common group of disorders are those that arise from an interplay of fetal, maternal and placental factors including preterm delivery, intrauterine growth restriction, pre-eclampsia, and perinatal death. Regardless of whether these are direct consequences of the use of ART or are merely associated through other indirect factors such as maternal age, conception after ART should be a factor that alerts the clinician to the possibility of fetal complications during pregnancy.


Assisted reproductive technology Fetal development Placental praevia Preterm birth Intrauterine growth restriction Imprinting disorder 


  1. 1.
    Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet. 1978;2(8085):366.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferraretti AP, Goossens V, de Mouzon J, Bhattacharya S, Castilla JA, Korsak V, et al. Assisted reproductive technology in Europe, 2008: results generated from European registers by ESHRE. Hum Reprod. 2012;27(9):2571–84.PubMedCrossRefGoogle Scholar
  3. 3.
    Sunderam S, Kissin DM, Crawford SB, Folger SG, Jamieson DJ, Barfield WD, et al. Assisted reproductive technology surveillance--United States, 2011. MMWR Surveill Summ. 2014;63(10):1–28.PubMedGoogle Scholar
  4. 4.
    McDonald SD, Murphy K, Beyene J, Ohlsson A. Perinatal outcomes of singleton pregnancies achieved by in vitro fertilization: a systematic review and meta-analysis. J Obstet Gynaecol Can. 2005;27(5):449–59.PubMedCrossRefGoogle Scholar
  5. 5.
    Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol. 2004;103(3):551–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Johnson JA, Tough S, Society of O, Gynaecologists of C. Delayed child-bearing. J Obstet Gynaecol Can. 2012;34(1):80–93.PubMedCrossRefGoogle Scholar
  7. 7.
    Segev Y, Riskin-Mashiah S, Lavie O, Auslender R. Assisted reproductive technologies: medical safety issues in the older woman. J Womens Health (Larchmt). 2011;20(6):853–61.CrossRefGoogle Scholar
  8. 8.
    Kort DH, Gosselin J, Choi JM, Thornton MH, Cleary-Goldman J, Sauer MV. Pregnancy after age 50: defining risks for mother and child. Am J Perinatol. 2012;29(4):245–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Raisanen S, Randell K, Nielsen HS, Gissler M, Kramer MR, Klemetti R, et al. Socioeconomic status affects the prevalence, but not the perinatal outcomes, of in vitro fertilization pregnancies. Hum Reprod. 2013;28(11):3118–25.PubMedCrossRefGoogle Scholar
  10. 10.
    Grady R, Alavi N, Vale R, Khandwala M, McDonald SD. Elective single embryo transfer and perinatal outcomes: a systematic review and meta-analysis. Fertil Steril. 2012;97(2):324–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Yang X, Li Y, Li C, Zhang W. Current overview of pregnancy complications and live-birth outcome of assisted reproductive technology in mainland China. Fertil Steril. 2014;101(2):385–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Ishihara O, Araki R, Kuwahara A, Itakura A, Saito H, Adamson GD. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril. 2014;101(1):128–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Healy DL, Breheny S, Halliday J, Jaques A, Rushford D, Garrett C, et al. Prevalence and risk factors for obstetric haemorrhage in 6730 singleton births after assisted reproductive technology in Victoria Australia. Hum Reprod. 2010;25(1):265–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Grigorescu V, Zhang Y, Kissin DM, Sauber-Schatz E, Sunderam M, Kirby RS, et al. Maternal characteristics and pregnancy outcomes after assisted reproductive technology by infertility diagnosis: ovulatory dysfunction versus tubal obstruction. Fertil Steril. 2014;101(4):1019–25.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kjerulff LE, Sanchez-Ramos L, Duffy D. Pregnancy outcomes in women with polycystic ovary syndrome: a metaanalysis. Am J Obstet Gynecol. 2011;204(6):558 e1–6.Google Scholar
  16. 16.
    Kallen B, Finnstrom O, Nygren KG, Olausson PO. In vitro fertilization (IVF) in Sweden: infant outcome after different IVF fertilization methods. Fertil Steril. 2005;84(3):611–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Pinborg A, Loft A, Aaris Henningsen AK, Rasmussen S, Andersen AN. Infant outcome of 957 singletons born after frozen embryo replacement: the Danish National Cohort Study 1995-2006. Fertil Steril. 2010;94(4):1320–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Devroey P, Liu J, Nagy Z, Goossens A, Tournaye H, Camus M, et al. Pregnancies after testicular sperm extraction and intracytoplasmic sperm injection in non-obstructive azoospermia. Hum Reprod. 1995;10(6):1457–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Fauser BC, Devroey P, Diedrich K, Balaban B, Bonduelle M, Delemarre-van de Waal HA, et al. Health outcomes of children born after IVF/ICSI: a review of current expert opinion and literature. Reprod Biomed Online. 2014;28(2):162–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Van Assche E, Bonduelle M, Tournaye H, Joris H, Verheyen G, Devroey P, et al. Cytogenetics of infertile men. Hum Reprod. 1996;11 Suppl 4:1–24; discussion 5–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Schreurs A, Legius E, Meuleman C, Fryns JP, D’Hooghe TM. Increased frequency of chromosomal abnormalities in female partners of couples undergoing in vitro fertilization or intracytoplasmic sperm injection. Fertil Steril. 2000;74(1):94–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Silber SJ, Alagappan R, Brown LG, Page DC. Y chromosome deletions in azoospermic and severely oligozoospermic men undergoing intracytoplasmic sperm injection after testicular sperm extraction. Hum Reprod. 1998;13(12):3332–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Kurinczuk JJ, Bhattacharya S. Rare chromosomal, genetic, and epigenetic-related risks associated with infertility treatment. Semin Fetal Neonatal Med. 2014;19(4):250–3.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee SH, Ahn SY, Lee KW, Kwack K, Jun HS, Cha KY. Intracytoplasmic sperm injection may lead to vertical transmission, expansion, and de novo occurrence of Y-chromosome microdeletions in male fetuses. Fertil Steril. 2006;85(5):1512–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Cox GF, Burger J, Lip V, Mau UA, Sperling K, Wu BL, et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet. 2002;71(1):162–4.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Halliday J, Oke K, Breheny S, Algar E, Amour DJ. Beckwith-Wiedemann syndrome and IVF: a case-control study. Am J Hum Genet. 2004;75(3):526–8.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril. 2009;91(2):305–15.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bowdin S, Allen C, Kirby G, Brueton L, Afnan M, Barratt C, et al. A survey of assisted reproductive technology births and imprinting disorders. Hum Reprod. 2007;22(12):3237–40.PubMedCrossRefGoogle Scholar
  29. 29.
    El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril. 2013;99(3):632–41.PubMedCrossRefGoogle Scholar
  30. 30.
    Fauque P. Ovulation induction and epigenetic anomalies. Fertil Steril. 2013;99(3):616–23.PubMedCrossRefGoogle Scholar
  31. 31.
    Turan N, Katari S, Gerson LF, Chalian R, Foster MW, Gaughan JP, et al. Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet. 2010;6(7), e1001033.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Oliver VF, Miles HL, Cutfield WS, Hofman PL, Ludgate JL, Morison IM. Defects in imprinting and genome-wide DNA methylation are not common in the in vitro fertilization population. Fertil Steril. 2012;97(1):147–53 e7.PubMedCrossRefGoogle Scholar
  33. 33.
    Gomes MV, Huber J, Ferriani RA, Amaral Neto AM, Ramos ES. Abnormal methylation at the KvDMR1 imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol Hum Reprod. 2009;15(8):471–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Fernandez-Twinn DS, Ozanne SE. Early life nutrition and metabolic programming. Ann N Y Acad Sci. 2010;1212:78–96.PubMedCrossRefGoogle Scholar
  35. 35.
    Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Aiken CE, Ozanne SE. Transgenerational developmental programming. Hum Reprod Update. 2014;20(1):63–75.PubMedCrossRefGoogle Scholar
  37. 37.
    Aston KI, Peterson CM, Carrell DT. Monozygotic twinning associated with assisted reproductive technologies: a review. Reproduction. 2008;136(4):377–86.PubMedCrossRefGoogle Scholar
  38. 38.
    Knopman JM, Krey LC, Oh C, Lee J, McCaffrey C, Noyes N. What makes them split? Identifying risk factors that lead to monozygotic twins after in vitro fertilization. Fertil Steril. 2014;102(1):82–9.PubMedCrossRefGoogle Scholar
  39. 39.
    van Jaarsveld CH, Llewellyn CH, Fildes A, Fisher A, Wardle J. Are my twins identical: parents may be misinformed by prenatal scan observations. BJOG. 2012;119(5):517–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Farhi A, Reichman B, Boyko V, Mashiach S, Hourvitz A, Margalioth EJ, et al. Congenital malformations in infants conceived following assisted reproductive technology in comparison with spontaneously conceived infants. J Matern Fetal Neonatal Med. 2013;26(12):1171–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Sagot P, Bechoua S, Ferdynus C, Facy A, Flamm X, Gouyon JB, et al. Similarly increased congenital anomaly rates after intrauterine insemination and IVF technologies: a retrospective cohort study. Hum Reprod. 2012;27(3):902–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Olson CK, Keppler-Noreuil KM, Romitti PA, Budelier WT, Ryan G, Sparks AE, et al. In vitro fertilization is associated with an increase in major birth defects. Fertil Steril. 2005;84(5):1308–15.PubMedCrossRefGoogle Scholar
  43. 43.
    Bonduelle M, Wennerholm UB, Loft A, Tarlatzis BC, Peters C, Henriet S, et al. A multi-centre cohort study of the physical health of 5-year-old children conceived after intracytoplasmic sperm injection, in vitro fertilization and natural conception. Hum Reprod. 2005;20(2):413–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Yan J, Huang G, Sun Y, Zhao X, Chen S, Zou S, et al. Birth defects after assisted reproductive technologies in China: analysis of 15,405 offspring in seven centers (2004 to 2008). Fertil Steril. 2011;95(1):458–60.PubMedCrossRefGoogle Scholar
  45. 45.
    Picaud JC, Chalies S, Combes C, Mercier G, Dechaud H, Cambonie G. Neonatal mortality and morbidity in preterm infants born from assisted reproductive technologies. Acta Paediatr. 2012;101(8):846–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Zwink N, Jenetzky E, Schmiedeke E, Schmidt D, Marzheuser S, Grasshoff-Derr S, et al. Assisted reproductive techniques and the risk of anorectal malformations: a German case-control study. Orphanet J Rare Dis. 2012;7:65.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Tararbit K, Lelong N, Thieulin AC, Houyel L, Bonnet D, Goffinet F, et al. The risk for four specific congenital heart defects associated with assisted reproductive techniques: a population-based evaluation. Hum Reprod. 2013;28(2):367–74.PubMedCrossRefGoogle Scholar
  48. 48.
    Valenzuela-Alcaraz B, Crispi F, Bijnens B, Cruz-Lemini M, Creus M, Sitges M, et al. Assisted reproductive technologies are associated with cardiovascular remodeling in utero that persists postnatally. Circulation. 2013;128(13):1442–50.PubMedCrossRefGoogle Scholar
  49. 49.
    Bergh T, Ericson A, Hillensjo T, Nygren KG, Wennerholm UB. Deliveries and children born after in-vitro fertilisation in Sweden 1982-95: a retrospective cohort study. Lancet. 1999;354(9190):1579–85.PubMedCrossRefGoogle Scholar
  50. 50.
    Zhu JL, Basso O, Obel C, Bille C, Olsen J. Infertility, infertility treatment, and congenital malformations: Danish national birth cohort. BMJ. 2006;333(7570):679.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Belva F, Henriet S, Van den Abbeel E, Camus M, Devroey P, Van der Elst J, et al. Neonatal outcome of 937 children born after transfer of cryopreserved embryos obtained by ICSI and IVF and comparison with outcome data of fresh ICSI and IVF cycles. Hum Reprod. 2008;23(10):2227–38.PubMedCrossRefGoogle Scholar
  52. 52.
    Wen J, Jiang J, Ding C, Dai J, Liu Y, Xia Y, et al. Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: a meta-analysis. Fertil Steril. 2012;97(6):1331–7 e1–4.Google Scholar
  53. 53.
    Hansen M, Bower C, Milne E, de Klerk N, Kurinczuk JJ. Assisted reproductive technologies and the risk of birth defects – a systematic review. Hum Reprod. 2005;20(2):328–38.PubMedCrossRefGoogle Scholar
  54. 54.
    Rimm AA, Katayama AC, Diaz M, Katayama KP. A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J Assist Reprod Genet. 2004;21(12):437–43.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Rimm AA, Katayama AC, Katayama KP. A meta-analysis of the impact of IVF and ICSI on major malformations after adjusting for the effect of subfertility. J Assist Reprod Genet. 2011;28(8):699–705.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366(19):1803–13.PubMedCrossRefGoogle Scholar
  57. 57.
    Ishihara O, Adamson GD, Dyer S, de Mouzon J, Nygren KG, Sullivan EA, et al. International committee for monitoring assisted reproductive technologies: world report on assisted reproductive technologies, 2007. Fertil Steril. 2015;103(2):402–13 e11.PubMedCrossRefGoogle Scholar
  58. 58.
    Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med. 2002;346(10):731–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Sazonova A, Kallen K, Thurin-Kjellberg A, Wennerholm UB, Bergh C. Obstetric outcome in singletons after in vitro fertilization with cryopreserved/thawed embryos. Hum Reprod. 2012;27(5):1343–50.PubMedCrossRefGoogle Scholar
  60. 60.
    Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(5):485–503.PubMedCrossRefGoogle Scholar
  61. 61.
    Nelissen EC, Dumoulin JC, Busato F, Ponger L, Eijssen LM, Evers JL, et al. Altered gene expression in human placentas after IVF/ICSI. Hum Reprod. 2014;29(12):2821–31.PubMedCrossRefGoogle Scholar
  62. 62.
    Cooper AR, O’Neill KE, Allsworth JE, Jungheim ES, Odibo AO, Gray DL, et al. Smaller fetal size in singletons after infertility therapies: the influence of technology and the underlying infertility. Fertil Steril. 2011;96(5):1100–6.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Romundstad LB, Romundstad PR, Sunde A, von During V, Skjaerven R, Gunnell D, et al. Effects of technology or maternal factors on perinatal outcome after assisted fertilisation: a population-based cohort study. Lancet. 2008;372(9640):737–43.PubMedCrossRefGoogle Scholar
  64. 64.
    De Geyter C, De Geyter M, Steimann S, Zhang H, Holzgreve W. Comparative birth weights of singletons born after assisted reproduction and natural conception in previously infertile women. Hum Reprod. 2006;21(3):705–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Nakashima A, Araki R, Tani H, Ishihara O, Kuwahara A, Irahara M, et al. Implications of assisted reproductive technologies on term singleton birth weight: an analysis of 25,777 children in the national assisted reproduction registry of Japan. Fertil Steril. 2013;99(2):450–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Maheshwari A, Pandey S, Shetty A, Hamilton M, Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril. 2012;98(2):368–77 e1–9.Google Scholar
  67. 67.
    Dumoulin JC, Land JA, Van Montfoort AP, Nelissen EC, Coonen E, Derhaag JG, et al. Effect of in vitro culture of human embryos on birthweight of newborns. Hum Reprod. 2010;25(3):605–12.PubMedCrossRefGoogle Scholar
  68. 68.
    Whitelaw N, Bhattacharya S, Hoad G, Horgan GW, Hamilton M, Haggarty P. Epigenetic status in the offspring of spontaneous and assisted conception. Hum Reprod. 2014;29(7):1452–8.PubMedCrossRefGoogle Scholar
  69. 69.
    McEvoy TG, Robinson JJ, Sinclair KD. Developmental consequences of embryo and cell manipulation in mice and farm animals. Reproduction. 2001;122(4):507–18.PubMedCrossRefGoogle Scholar
  70. 70.
    Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, Carolan C, et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet. 2001;27(2):153–4.PubMedCrossRefGoogle Scholar
  71. 71.
    Hayashi M, Nakai A, Satoh S, Matsuda Y. Adverse obstetric and perinatal outcomes of singleton pregnancies may be related to maternal factors associated with infertility rather than the type of assisted reproductive technology procedure used. Fertil Steril. 2012;98(4):922–8.PubMedCrossRefGoogle Scholar
  72. 72.
    McGovern PG, Llorens AJ, Skurnick JH, Weiss G, Goldsmith LT. Increased risk of preterm birth in singleton pregnancies resulting from in vitro fertilization-embryo transfer or gamete intrafallopian transfer: a meta-analysis. Fertil Steril. 2004;82(6):1514–20.PubMedCrossRefGoogle Scholar
  73. 73.
    Helmerhorst FM, Perquin DA, Donker D, Keirse MJ. Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ. 2004;328(7434):261.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Caserta D, Bordi G, Stegagno M, Filippini F, Podagrosi M, Roselli D, et al. Maternal and perinatal outcomes in spontaneous versus assisted conception twin pregnancies. Eur J Obstet Gynecol Reprod Biol. 2014;174:64–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Henriksen TB, Baird DD, Olsen J, Hedegaard M, Secher NJ, Wilcox AJ. Time to pregnancy and preterm delivery. Obstet Gynecol. 1997;89(4):594–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Maheshwari A, Kalampokas T, Davidson J, Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of blastocyst-stage versus cleavage-stage embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril. 2013;100(6):1615–21 e1–10.Google Scholar
  77. 77.
    Dhont M, De Sutter P, Ruyssinck G, Martens G, Bekaert A. Perinatal outcome of pregnancies after assisted reproduction: a case-control study. Am J Obstet Gynecol. 1999;181(3):688–95.PubMedCrossRefGoogle Scholar
  78. 78.
    Draper ES, Kurinczuk JJ, Abrams KR, Clarke M. Assessment of separate contributions to perinatal mortality of infertility history and treatment: a case-control analysis. Lancet. 1999;353(9166):1746–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Chauhan SP, Scardo JA, Hayes E, Abuhamad AZ, Berghella V. Twins: prevalence, problems, and preterm births. Am J Obstet Gynecol. 2010;203(4):305–15.PubMedCrossRefGoogle Scholar
  80. 80.
    Jauniaux E, Ben-Ami I, Maymon R. Do assisted-reproduction twin pregnancies require additional antenatal care? Reprod Biomed Online. 2013;26(2):107–19.PubMedCrossRefGoogle Scholar
  81. 81.
    Ben-Ami I, Edel Y, Barel O, Vaknin Z, Herman A, Maymon R. Do assisted conception twins have an increased risk for anencephaly? Hum Reprod. 2011;26(12):3466–71.PubMedCrossRefGoogle Scholar
  82. 82.
    Hansen M, Colvin L, Petterson B, Kurinczuk JJ, de Klerk N, Bower C. Twins born following assisted reproductive technology: perinatal outcome and admission to hospital. Hum Reprod. 2009;24(9):2321–31.PubMedCrossRefGoogle Scholar
  83. 83.
    Adler-Levy Y, Lunenfeld E, Levy A. Obstetric outcome of twin pregnancies conceived by in vitro fertilization and ovulation induction compared with those conceived spontaneously. Eur J Obstet Gynecol Reprod Biol. 2007;133(2):173–8.PubMedCrossRefGoogle Scholar
  84. 84.
    McDonald SD, Han Z, Mulla S, Ohlsson A, Beyene J, Murphy KE, et al. Preterm birth and low birth weight among in vitro fertilization twins: a systematic review and meta-analyses. Eur J Obstet Gynecol Reprod Biol. 2010;148(2):105–13.PubMedCrossRefGoogle Scholar
  85. 85.
    Chaveeva P, Carbone IF, Syngelaki A, Akolekar R, Nicolaides KH. Contribution of method of conception on pregnancy outcome after the 11-13 weeks scan. Fetal Diagn Ther. 2011;30(1):9–22.PubMedCrossRefGoogle Scholar
  86. 86.
    Moise J, Laor A, Armon Y, Gur I, Gale R. The outcome of twin pregnancies after IVF. Hum Reprod. 1998;13(6):1702–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Olivennes F, Kadhel P, Rufat P, Fanchin R, Fernandez H, Frydman R. Perinatal outcome of twin pregnancies obtained after in vitro fertilization: comparison with twin pregnancies obtained spontaneously or after ovarian stimulation. Fertil Steril. 1996;66(1):105–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Vasario E, Borgarello V, Bossotti C, Libanori E, Biolcati M, Arduino S, et al. IVF twins have similar obstetric and neonatal outcome as spontaneously conceived twins: a prospective follow-up study. Reprod Biomed Online. 2010;21(3):422–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Sills ES, Moomjy M, Zaninovic N, Veeck LL, McGee M, Palermo GD, et al. Human zona pellucida micromanipulation and monozygotic twinning frequency after IVF. Hum Reprod. 2000;15(4):890–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Hack KE, Derks JB, Elias SG, Franx A, Roos EJ, Voerman SK, et al. Increased perinatal mortality and morbidity in monochorionic versus dichorionic twin pregnancies: clinical implications of a large Dutch cohort study. BJOG. 2008;115(1):58–67.PubMedCrossRefGoogle Scholar
  91. 91.
    Desai N, Lewis D, Sunday S, Rochelson B. Current antenatal management of monoamniotic twins: a survey of maternal-fetal medicine specialists. J Matern Fetal Neonatal Med. 2012;25(10):1913–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Mercan R, Oktem O, Salar Z, Nuhoglu A, Balaban B, Urman B. Conjoined twins after intracytoplasmic sperm injection and transfer of day-3 embryos. Fertil Steril. 2011;96(2):e111–4.PubMedCrossRefGoogle Scholar
  93. 93.
    Pinborg A. IVF/ICSI twin pregnancies: risks and prevention. Hum Reprod Update. 2005;11(6):575–93.PubMedCrossRefGoogle Scholar
  94. 94.
    Oleszczuk JJ, Keith LG, Oleszczuk AK. The paradox of old maternal age in multiple pregnancies. Obstet Gynecol Clin North Am. 2005;32(1):69–80, ix.PubMedCrossRefGoogle Scholar
  95. 95.
    Badgery-Parker T, Shand AW, Ford JB, Jenkins MG, Morris JM, Roberts CL. Multifetal pregnancies: preterm admissions and outcomes. Aust Health Rev. 2012;36(4):437–42.PubMedCrossRefGoogle Scholar
  96. 96.
    Strauss A, Winkler D, Middendorf K, Kumper C, Herber-Jonat S, Schulze A. Higher order multiples – socioeconomic impact on family life. Eur J Med Res. 2008;13(4):147–53.PubMedGoogle Scholar
  97. 97.
    Chibber R, Fouda M, Shishtawy W, Al-Dossary M, Al-Hijji J, Amen A, et al. Maternal and neonatal outcome in triplet, quadruplet and quintuplet gestations following ART: a 11-year study. Arch Gynecol Obstet. 2013;288(4):759–67.PubMedCrossRefGoogle Scholar
  98. 98.
    Shiva M, Mohammadi Yeganeh L, Mirzaagha E, Chehrazi M, Bagheri Lankarani N. Comparison of the outcomes between reduced and nonreduced triplet pregnancies achieved by Assisted Reproductive Technology. Aust N Z J Obstet Gynaecol. 2014;54(5):424–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Kaufman GE, Malone FD, Harvey-Wilkes KB, Chelmow D, Penzias AS, D’Alton ME. Neonatal morbidity and mortality associated with triplet pregnancy. Obstet Gynecol. 1998;91(3):342–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Boulot P, Vignal J, Vergnes C, Dechaud H, Faure JM, Hedon B. Multifetal reduction of triplets to twins: a prospective comparison of pregnancy outcome. Hum Reprod. 2000;15(7):1619–23.PubMedCrossRefGoogle Scholar
  101. 101.
    American College of O, Gynecologists. ACOG Committee opinion no. 553: multifetal pregnancy reduction. Obstet Gynecol. 2013;121(2 Pt 1):405–10.Google Scholar
  102. 102.
    Shah V, Alwassia H, Shah K, Yoon W, Shah P. Neonatal outcomes among multiple births </= 32 weeks gestational age: does mode of conception have an impact? A cohort study. BMC Pediatr. 2011;11:54.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Fitzsimmons BP, Bebbington MW, Fluker MR. Perinatal and neonatal outcomes in multiple gestations: assisted reproduction versus spontaneous conception. Am J Obstet Gynecol. 1998;179(5):1162–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Oyelese Y, Catanzarite V, Prefumo F, Lashley S, Schachter M, Tovbin Y, et al. Vasa previa: the impact of prenatal diagnosis on outcomes. Obstet Gynecol. 2004;103(5 Pt 1):937–42.PubMedCrossRefGoogle Scholar
  105. 105.
    Salafia CM, Yampolsky M, Shlakhter A, Mandel DH, Schwartz N. Variety in placental shape: when does it originate? Placenta. 2012;33(3):164–70.PubMedCrossRefGoogle Scholar
  106. 106.
    Cai LY, Izumi S, Koido S, Uchida N, Suzuki T, Matsubayashi H, et al. Abnormal placental cord insertion may induce intrauterine growth restriction in IVF-twin pregnancies. Hum Reprod. 2006;21(5):1285–90.PubMedCrossRefGoogle Scholar
  107. 107.
    Gavriil P, Jauniaux E, Leroy F. Pathologic examination of placentas from singleton and twin pregnancies obtained after in vitro fertilization and embryo transfer. Pediatr Pathol. 1993;13(4):453–62.PubMedCrossRefGoogle Scholar
  108. 108.
    Baulies S, Maiz N, Munoz A, Torrents M, Echevarria M, Serra B. Prenatal ultrasound diagnosis of vasa praevia and analysis of risk factors. Prenat Diagn. 2007;27(7):595–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Jauniaux E, Englert Y, Vanesse M, Hiden M, Wilkin P. Pathologic features of placentas from singleton pregnancies obtained by in vitro fertilization and embryo transfer. Obstet Gynecol. 1990;76(1):61–4.PubMedGoogle Scholar
  110. 110.
    Cipriano LE, Barth Jr WH, Zaric GS. The cost-effectiveness of targeted or universal screening for vasa praevia at 18-20 weeks of gestation in Ontario. BJOG. 2010;117(9):1108–18.PubMedCrossRefGoogle Scholar
  111. 111.
    Norgaard LN, Pinborg A, Lidegaard O, Bergholt T. A Danish national cohort study on neonatal outcome in singleton pregnancies with placenta previa. Acta Obstet Gynecol Scand. 2012;91(5):546–51.PubMedCrossRefGoogle Scholar
  112. 112.
    Korosec S, Ban Frangez H, Verdenik I, Kladnik U, Kotar V, Virant-Klun I, et al. Singleton pregnancy outcomes after in vitro fertilization with fresh or frozen-thawed embryo transfer and incidence of placenta praevia. Biomed Res Int. 2014;2014:431797.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Romundstad LB, Romundstad PR, Sunde A, von During V, Skjaerven R, Vatten LJ. Increased risk of placenta previa in pregnancies following IVF/ICSI; a comparison of ART and non-ART pregnancies in the same mother. Hum Reprod. 2006;21(9):2353–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Rombauts L, Motteram C, Berkowitz E, Fernando S. Risk of placenta praevia is linked to endometrial thickness in a retrospective cohort study of 4537 singleton assisted reproduction technology births. Hum Reprod. 2014;29(12):2787–93.PubMedCrossRefGoogle Scholar
  115. 115.
    Esh-Broder E, Ariel I, Abas-Bashir N, Bdolah Y, Celnikier DH. Placenta accreta is associated with IVF pregnancies: a retrospective chart review. BJOG. 2011;118(9):1084–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Farhi J, Ben-Haroush A, Andrawus N, Pinkas H, Sapir O, Fisch B, et al. High serum oestradiol concentrations in IVF cycles increase the risk of pregnancy complications related to abnormal placentation. Reprod Biomed Online. 2010;21(3):331–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Carbone IF, Cruz JJ, Sarquis R, Akolekar R, Nicolaides KH. Assisted conception and placental perfusion assessed by uterine artery Doppler at 11-13 weeks’ gestation. Hum Reprod. 2011;26(7):1659–64.PubMedCrossRefGoogle Scholar
  118. 118.
    Allen VM, Wilson RD, Cheung A, Genetics Committee of the Society of O, Gynaecologists of C, Reproductive Endocrinology Infertility Committee of the Society of O. Pregnancy outcomes after assisted reproductive technology. J Obstet Gynaecol Can. 2006;28(3):220–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Fetal and Maternal MedicineAddenbrooke’s HospitalCambridgeUK
  2. 2.Department of Obstetrics and GynaecologyCambridge University Hospitals NHS TrustCambridgeUK

Personalised recommendations