Skip to main content

Fungi in Consolidated Bioprocessing of Lignocellulosic Materials

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Second generation biorefineries are based on the efficient exploitation of the carbon stored in lignocellulosic biomass. Many fungal genera have the capacity to enzymatically degrade lignocellulose, while other can transform the resulting degradation products into compounds of economical value, such as biofuels. The possibility of performing both tasks in a single vessel and, ideally, by a single microbial strain is described by the term consolidated bioprocessing (CBP). This strategy is in principle applicable to the production of a broad range of compounds using plant biomass as raw material. In this chapter we will discuss the progress, problems, and prospects of CBP systems that exploit fungal species as their main biocatalyst. Since most of the relevant research has been conducted toward the production of bioethanol, our approach will focus on the efforts to either engineer ethanologenic strains for cellulase and hemicellulase production or to increase the fermentative capacity of natural biomass degraders. Finally, we will give an overview of fungal lignocellulose CBP processes for the production of additional higher value-added chemicals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For additional information on decomposition of lignin by white-rot fungi, please refer to Chap. 9 White and brown rot fungi as decomposers of lignocellulosic materials and their role in waste and pollution control.

  2. 2.

    Additional information on endophytic fungi as biofactories is presented in Chap. 14 Unravelling the chemical interactions of fungal endophytes for exploitation as microbial factories.

References

  • Aden AJ, Bozell HJ, White J, Manheim A (2004) Top value added chemicals from biomass. Volume I: results of screening for potential candidates from sugars and synthesis gas. In: Werpy T, Petersen G (eds) Pacific Northwest National Laboratory (PNNL), National Renewable Energy Laboratory (NREL) and Office of Biomass Program (EERE)

    Google Scholar 

  • Adsul M, Singhvi M, Gaikaiwari S, Gokhale D (2011) Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour Technol 102(6):4304–4312

    Article  CAS  PubMed  Google Scholar 

  • Albergaria H, Arneborg N (2016) Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions. Appl Microbiol Biotechnol 100(5):2035–2046

    Article  CAS  PubMed  Google Scholar 

  • Ali SS, Khan M, Fagan B, Mullins E, Doohan FM (2012) Exploiting the inter-strain divergence of Fusarium oxysporum for microbial bioprocessing of lignocellulose to bioethanol. AMB Express 2(1):1–9

    Article  CAS  Google Scholar 

  • Ali SS, Nugent B, Mullins E, Doohan FM (2013) Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose. PLoS ONE 8(1):e54701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SS, Khan M, Mullins E, Doohan FM (2014) Identification of Fusarium oxysporum genes associated with lignocellulose bioconversion competency. Bioenergy Res 7(1):110–119

    Article  CAS  Google Scholar 

  • Ali SS, Nugent B, Mullins E, Doohan FM (2016) Fungal-mediated consolidated bioprocessing: the potential of Fusarium oxysporum for the lignocellulosic ethanol industry. AMB Express 6(1):1–13

    Article  CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  CAS  PubMed  Google Scholar 

  • Amore A, Faraco V (2012) Potential of fungi as category I Consolidated BioProcessing organisms for cellulosic ethanol production. Renew Sustain Energy Rev 16(5):3286–3301

    Article  CAS  Google Scholar 

  • Anasontzis G, Zerva A, Stathopoulou P, Haralampidis K, Diallinas G, Karagouni A, Hatzinikolaou D (2011) Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics. J Biotechnol 152(1–2):16–23

    Article  CAS  PubMed  Google Scholar 

  • Anasontzis GE, Kourtoglou E, Mamma D, Villas-Boâs SG, Hatzinikolaou DG, Christakopoulos P (2014) Constitutive homologous expression of phosphoglucomutase and transaldolase increases the metabolic flux of Fusarium oxysporum. Microb Cell Fact 13(1):1–13

    Article  CAS  Google Scholar 

  • Anasontzis GE, Kourtoglou E, Villas-Boas SG, Hatzinikolaou DG, Christakopoulos P (2016) Metabolic engineering of Fusarium oxysporum to improve its ethanol-producing capability. Front Microbiol 7:632

    Google Scholar 

  • Ballesteros I, Ballesteros M, CabaÑas A, Carrasco J, MartÍn C, Negro MJ, Saez F, Saez R (1991) Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol. Appl Biochem Biotechnol 28–29(1):307–315

    Article  PubMed  Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39(12):1843–1848

    Article  CAS  Google Scholar 

  • Barron N, Marchant R, McHale L, McHale AP (1995) Studies on the use of a thermotolerant strain of Kluyveromyces marxianus in simultaneous saccharification and ethanol formation from cellulose. Appl Microbiol Biotechnol 43(3):518–520

    Article  CAS  Google Scholar 

  • Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Ann Rev Microbiol 58:521–554

    Article  CAS  Google Scholar 

  • Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 5

    Google Scholar 

  • Boyle M, Barron N, McHale AP (1997) Simultaneous saccharification and fermentation of straw to ethanol using the thermotolerant yeast strain Kluyveromyces marxianus imb3. Biotechnol Lett 19(1):49–51

    Article  CAS  Google Scholar 

  • Brink J, Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91(6):1477–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A (2013) Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of l-malic acid. Appl Microbiol Biotechnol 97(20):8903–8912

    Article  CAS  PubMed  Google Scholar 

  • Cai Z, Zhang B, Li Y (2012) Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives. Biotechnol J 7(1):34–46

    Article  CAS  PubMed  Google Scholar 

  • Carta FS, Soccol CR, Ramos LP, Fontana JD (1999) Production of fumaric acid by fermentation of enzymatic hydrolysates derived from cassava bagasse. Bioresour Technol 68(1):23–28

    Article  CAS  Google Scholar 

  • Chang J-J, Ho C-Y, Ho F-J, Tsai T-Y, Ke H-M, Wang C, Chen H-L, Shih M-C, Huang C-C, Li W-H (2012) PGASO: a synthetic biology tool for engineering a cellulolytic yeast. Biotechnol Biofuels 5(1):53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang J-J, Ho F-J, Ho C-Y, Wu Y-C, Hou Y-H, Huang C-C, Shih M-C, Li W-H (2013) Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. Biotechnol Biofuels 6(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charoensopharat K, Thanonkeo P, Thanonkeo S, Yamada M (2015) Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing. Antonie Van Leeuwenhoek 108(1):173–190

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Dou J (2015) Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development. Biotechnol Lett 38(2):213–221

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Fu X (2016) Industrial technologies for bioethanol production from lignocellulosic biomass. Renew Sustain Energy Rev 57:468–478

    Article  CAS  Google Scholar 

  • Chi Z, Wang Z-P, Wang G-Y, Khan I, Chi Z-M (2016) Microbial biosynthesis and secretion of l-malic acid and its applications. Crit Rev Biotechnol 36(1):99–107

    Article  CAS  PubMed  Google Scholar 

  • Choudhary J, Singh S, Nain L (2016) Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron J Biotechnol 21:82–92

    Article  CAS  Google Scholar 

  • Christakopoulos P, Macris BJ, Kekos D (1989) Direct fermentation of cellulose to ethanol by Fusarium oxysporum. Enzyme Microb Technol 11(4):236–239

    Article  CAS  Google Scholar 

  • Cragg SM, Beckham GT, Bruce NC, Bugg TDH, Distel DL, Dupree P, Etxabe AG, Goodell BS, Jellison J, McGeehan JE, McQueen-Mason SJ, Schnorr K, Walton PH, Watts JEM, Zimmer M (2015) Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol 29:108–119

    Article  CAS  PubMed  Google Scholar 

  • de Albuquerque TL, da Silva IJ Jr, de Macedo GR, Rocha MVP (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49(11):1779–1789

    Article  CAS  Google Scholar 

  • de Siqueira FG, de Siqueira EG, Jaramillo PMD, Silveira MHL, Andreaus J, Couto FA, Batista LR, Filho EXF (2010) The potential of agro-industrial residues for production of holocellulase from filamentous fungi. Int Biodeterior Biodegradation 64(1):20–26

    Article  CAS  Google Scholar 

  • Della-Bianca BE, Basso TO, Stambuk BU, Basso LC, Gombert AK (2012) What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 97(3):979–991

    Article  PubMed  CAS  Google Scholar 

  • Den Haan R, Van Zyl WH (2003) Enhanced xylan degradation and utilisation by Pichia stipitis overproducing fungal xylanolytic enzymes. Enzyme Microb Technol 33(5):620–628

    Article  CAS  Google Scholar 

  • den Haan R, van Rensburg E, Rose SH, Görgens JF, van Zyl WH (2015) Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotechnol 33:32–38

    Article  CAS  Google Scholar 

  • Deneyer A, Renders T, Van Aelst J, Van den Bosch S, Gabriëls D, Sels BF (2015) Alkane production from biomass: chemo-, bio- and integrated catalytic approaches. Curr Opin Chem Biol 29:40–48

    Article  CAS  PubMed  Google Scholar 

  • Dugar D, Stephanopoulos G (2011) Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat Biotechnol 29(12):1074–1078

    Article  CAS  PubMed  Google Scholar 

  • Eiteman MA, Ramalingam S (2015) Microbial production of lactic acid. Biotechnol Lett 37(5):955–972

    Article  CAS  PubMed  Google Scholar 

  • Elkins JG, Raman B, Keller M (2010) Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr Opin Biotechnol 21(5):657–662

    Article  CAS  PubMed  Google Scholar 

  • Enari TM, Suihko ML (1983) Ethanol production by fermentation of pentoses and hexoses from cellulosic materials. Crit Rev Biotechnol 1(3):229–240

    Article  Google Scholar 

  • Fan J-X, Yang Q, Liu Z-H, Huang X-M, Song J-Z, Chen Z-X, Sun Y, Liang Q, Wang S (2010) The characterization of transaldolase gene tal from Pichia stipitis and its heterologous expression in Fusarium oxysporum. Mol Biol Rep 38(3):1831–1840

    Article  PubMed  CAS  Google Scholar 

  • Fan J-X, Yang X-X, Song J-Z, Huang X-M, Cheng Z-X, Yao L, Juba OS, Liang Q, Yang Q, Odeph M, Sun Y, Wang Y (2011) Heterologous expression of transaldolase gene Tal from Saccharomyces cerevisiae in Fusarium oxysporum for enhanced bioethanol production. Appl Biochem Biotechnol 164(7):1023–1036

    Article  CAS  PubMed  Google Scholar 

  • Feng C, Zou S, Liu C, Yang H, Zhang K, Ma Y, Hong J, Zhang M (2016) Ethanol production from acid- and alkali-pretreated corncob by endoglucanase and β-glucosidase co-expressing Saccharomyces cerevisiae subject to the expression of heterologous genes and nutrition added. World J Microbiol Biotechnol 32(5):1–7

    Article  CAS  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79(3):339–354

    Article  CAS  PubMed  Google Scholar 

  • Galbe M, Sassner P, Wingren A, Zacchi G (2007) Process engineering economics of bioethanol production. In: Olsson L (ed) Biofuels. Springer, Berlin Heidelberg, pp 303–327

    Google Scholar 

  • Gangl IC, Weigand WA, Keller FA (1990) Economic comparison of calcium fumarate and sodium fumarate production by Rhizopus arrhizus. Appl Biochem Biotechnol 24–25(1):663–677

    Article  Google Scholar 

  • Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour Technol 99(16):7623–7629

    Article  CAS  PubMed  Google Scholar 

  • García-Aparicio MP, Oliva JM, Manzanares P, Ballesteros M, Ballesteros I, González A, Negro MJ (2011) Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel 90(4):1624–1630

    Article  CAS  Google Scholar 

  • Gianoulis TA, Griffin MA, Spakowicz DJ, Dunican BF, Alpha CJ, Sboner A, Sismour AM, Kodira C, Egholm M, Church GM, Gerstein MB, Strobel SA (2012) Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus ascocoryne sarcoides. PLoS Genet 8(3):e1002558

    Google Scholar 

  • Gong C-S, Maun CM, Tsao GT (1981) Direct fermentation of cellulose to ethanol by a cellulolytic filamentous fungus, Monilia sp. Biotechnol Lett 3(2):77–82

    Article  CAS  Google Scholar 

  • Guerriero G, Hausman J-F, Strauss J, Ertan H, Siddiqui KS (2015) Destructuring plant biomass: Focus on fungal and extremophilic cell wall hydrolases. Plant Sci 234:180–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guirimand G, Sasaki K, Inokuma K, Bamba T, Hasunuma T, Kondo A (2016) Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate. Appl Microbiol Biotechnol 100(8):3477–3487

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Zhang J, Hu F, Dy Ryu D, Bao J (2013a) Consolidated bioprocessing of highly concentrated jerusalem artichoke tubers for simultaneous saccharification and ethanol fermentation. Biotechnol Bioeng 110(10):2606–2615

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Zhang R, Li Z, Dai D, Li C, Zhou X (2013b) A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Bioresour Technol 128:547–552

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Duquesne S, Bozonnet S, Cioci G, Nicaud J-M, Marty A, O’Donohue MJ (2015) Development of cellobiose-degrading ability in Yarrowia lipolytica strain by overexpression of endogenous genes. Biotechnol Biofuels 8(1):1–16

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556

    Article  PubMed  CAS  Google Scholar 

  • Harner NK, Wen X, Bajwa PK, Austin GD, Ho C-Y, Habash MB, Trevors JT, Lee H (2014) Genetic improvement of native xylose-fermenting yeasts for ethanol production. J Ind Microbiol Biotechnol 42(1):1–20

    Article  PubMed  CAS  Google Scholar 

  • Hasunuma T, Ishii J, Kondo A (2015) Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown. Curr Opin Chem Biol 29:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hennessy RC, Doohan F, Mullins E (2013) Generating phenotypic diversity in a fungal biocatalyst to investigate alcohol stress tolerance encountered during microbial cellulosic biofuel production. PLoS ONE 8(10):e77501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera Bravo de Laguna I, Toledo Marante FJ, Mioso R (2015). Enzymes and bioproducts produced by the ascomycete fungus Paecilomyces variotii. J Appl Microbiol 119:1455–1466

    Google Scholar 

  • Ho DP, Ngo HH, Guo W (2014) A mini review on renewable sources for biofuel. Bioresour Technol 169:742–749

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130(2):114–123

    Article  CAS  PubMed  Google Scholar 

  • Hong S-J, Kim HJ, Kim J-W, Lee D-H, Seo J-H (2014) Optimizing promoters and secretory signal sequences for producing ethanol from inulin by recombinant Saccharomyces cerevisiae carrying Kluyveromyces marxianus inulinase. Bioprocess Biosyst Eng 38(2):263–272

    Article  PubMed  CAS  Google Scholar 

  • Hu N, Yuan B, Sun J, Wang S-A, Li F-L (2012) Thermotolerant Kluyveromyces marxianus and Saccharomyces cerevisiae strains representing potentials for bioethanol production from Jerusalem artichoke by consolidated bioprocessing. Appl Microbiol Biotechnol 95(5):1359–1368

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Chen D, Wei Y, Wang Q, Li Z, Chen Y, Huang R (2014) Direct Ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48. Sci World J 2014:8

    Google Scholar 

  • Isroi R, Millati S, Syamsiah C, Niklasson MN, Cahyanto K Lundquist, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources 6(4):5224–5259

    Google Scholar 

  • Jäger G, Büchs J (2012) Biocatalytic conversion of lignocellulose to platform chemicals. Biotechnol J 7(9):1122–1136

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Balan V, Gunawan C, Dale BE (2011) Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol Bioeng 108(6):1290–1297

    Article  CAS  PubMed  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2009) Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnol Adv 27(2):145–152

    Google Scholar 

  • Kawaguchi H, Hasunuma T, Ogino C, Kondo A (2016) Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42:30–39

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim CH (2014) Evaluation of whole Jerusalem artichoke (Helianthus tuberosus L.) for consolidated bioprocessing ethanol production. Renew Energy 65:83–91

    Article  CAS  Google Scholar 

  • Kircher M (2015) Sustainability of biofuels and renewable chemicals production from biomass. Curr Opin Chem Biol 29:26–31

    Article  CAS  PubMed  Google Scholar 

  • Klement T, Büchs J (2013) Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431

    Article  CAS  PubMed  Google Scholar 

  • Klement T, Milker S, Jäger G, Grande PM, Domínguez de María P, Büchs J (2012) Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact 11(1):1–13

    Article  CAS  Google Scholar 

  • Kourtoglou E, Anasontzis GE, Mamma D, Topakas E, Hatzinikolaou DG, Christakopoulos P (2011) Constitutive expression, purification and characterization of a phosphoglucomutase from Fusarium oxysporum. Enzyme Microb Technol 48(3):217–224

    Article  CAS  PubMed  Google Scholar 

  • Kricka W, Fitzpatrick J, Bond U (2014) Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective. Front Microbiol 5

    Google Scholar 

  • Kück U, Hoff B (2010) New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 86(1):51–62

    Article  PubMed  CAS  Google Scholar 

  • la Grange D, den Haan R, van Zyl W (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87(4):1195–1208

    Article  CAS  PubMed  Google Scholar 

  • Lane S, Zhang S, Wei N, Rao C, Jin Y-S (2015) Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica. Biotechnol Bioeng 112(5):1012–1022

    Article  CAS  PubMed  Google Scholar 

  • Lara CA, Santos RO, Cadete RM, Ferreira C, Marques S, Gírio F, Oliveira ES, Rosa CA, Fonseca C (2014) Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 105(6):1107–1119

    Article  CAS  Google Scholar 

  • Lark N, Xia Y, Qin C-G, Gong CS, Tsao GT (1997) Production of ethanol from recycled paper sludge using cellulase and yeast, Kluveromyces marxianus. Biomass Bioenergy 12(2):135–143

    Article  CAS  Google Scholar 

  • Larran A, Jozami E, Vicario L, Feldman SR, Podestá FE, Permingeat HR (2015) Evaluation of biological pretreatments to increase the efficiency of the saccharification process using Spartina argentinensis as a biomass resource. Bioresour Technol 194:320–325

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Biely P, Latta RK, Barbosa MFS, Schneider H (1986) Utilization of xylan by yeasts and its conversion to ethanol by Pichia stipitis strains. Appl Environ Microbiol 52(2):320–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Liu Y, Yang Y, Zhang H, Wang H, Wu Y, Zhang M, Sun T, Cheng J, Wu X, Pan L, Jiang S, Wu H (2014) High levels of malic acid production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain. Biotechnol Bioprocess Eng 19(3):478–492

    Article  CAS  Google Scholar 

  • Liaud N, Rosso M-N, Fabre N, Crapart S, Herpoël-Gimbert I, Sigoillot J-C, Raouche S, Levasseur A (2015) L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae. Microb Cell Fact 14(1):1–9

    Article  CAS  Google Scholar 

  • Linger JG, Adney WS, Darzins A (2010) Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl Environ Microbiol 76(19):6360–6369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long X-H, Shao H-B, Liu L, Liu L-P, Liu Z-P (2016) Jerusalem artichoke: a sustainable biomass feedstock for biorefinery. Renew Sustain Energy Rev 54:1382–1388

    Article  CAS  Google Scholar 

  • Luo Z, Bao J (2015) Secretive expression of heterologous β-glucosidase in Zymomonas mobilis. Bioresour Bioprocess 2(1):1–6

    Article  CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5): 577–583

    Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26(2):169–172

    Article  CAS  PubMed  Google Scholar 

  • Mallette N, Pankratz EM, Parker AE, Strobel GA, Busse SC, Carlson RP, Peyton BM (2014) Evaluation of cellulose as a substrate for hydrocarbon fuel production by Ascocoryne sarcoides (NRRL 50072). J Sustain Bioenergy Syst 4:33–49

    Article  CAS  Google Scholar 

  • Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84(1):37–53

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki C, Nakagawa A, Koyanagi T, Tanaka K, Minami H, Tamaki H, Katayama T, Yamamoto K, Kumagai H (2012) Kluyveromyces marxianus-based platform for direct ethanol fermentation and recovery from cellulosic materials under air-ventilated conditions. J Biosci Bioeng 113(5):604–607

    Article  CAS  PubMed  Google Scholar 

  • Mazzoli R, Lamberti C, Pessione E (2012) Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies. Trends Biotechnol 30(2):111–119

    Article  CAS  PubMed  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4):522–550

    Article  CAS  Google Scholar 

  • Millati R, Edebo L, Taherzadeh MJ (2005) Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates. Enzyme Microb Technol 36(2–3):294–300

    Article  CAS  Google Scholar 

  • Mondala AH (2015) Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. J Ind Microbiol Biotechnol 42(4):487–506

    Article  CAS  PubMed  Google Scholar 

  • Morosoli R, Zalce E, Durand S (1993) Secretion of a Cryptococcus albidus xylanase in Pichia stipitis resulting in a xylan fermenting transformant. Curr Genet 24(1):94–99

    Article  CAS  PubMed  Google Scholar 

  • Moysés DN, Reis VCB, de Almeida JRM, de Moraes LMP, Torres FAG (2016) Xylose fermentation by Saccharomyces cerevisiae: Challenges and prospects. Int J Mol Sci 17(3)

    Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14(2):578–597

    Article  CAS  Google Scholar 

  • Narayanaswamy N, Dheeran P, Verma S, Kumar S (2013) Biological pretreatment of lignocellulosic biomass for enzymatic saccharification. In: Fang Z (ed) Pretreatment techniques for biofuels and biorefineries. Springer, Berlin Heidelberg, pp 3–34

    Chapter  Google Scholar 

  • Narra M, Dixit G, Divecha J, Madamwar D, Shah AR (2012) Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw. Bioresour Technol 121:355–361

    Article  CAS  PubMed  Google Scholar 

  • Narron RH, Kim H, Chang H-M, Jameel H, Park S (2016) Biomass pretreatments capable of enabling lignin valorization in a biorefinery process. Curr Opin Biotechnol 38:39–46

    Article  CAS  PubMed  Google Scholar 

  • Nevalainen H, Peterson R (2014) Making recombinant proteins in filamentous fungi- are we expecting too much? Front Microbiol 5

    Google Scholar 

  • Okabe M, Lies D, Kanamasa S, Park E (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84(4):597–606

    Article  CAS  PubMed  Google Scholar 

  • Olson DG, McBride JE, Joe Shaw A, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23(3):396–405

    Article  CAS  PubMed  Google Scholar 

  • Panagiotou G, Christakopoulos P, Olsson L (2005a) The influence of different cultivation conditions on the metabolome of Fusarium oxysporum. J Biotechnol 118(3):304–315

    Article  CAS  PubMed  Google Scholar 

  • Panagiotou G, Christakopoulos P, Villas-Boas SG, Olsson L (2005b) Fermentation performance and intracellular metabolite profiling of Fusarium oxysporum cultivated on a glucose–xylose mixture. Enzyme Microb Technol 36(1):100–106

    Article  CAS  Google Scholar 

  • Panagiotou G, Villas-Bôas SG, Christakopoulos P, Nielsen J, Olsson L (2005c) Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. J Biotechnol 115(4):425–434

    Article  CAS  PubMed  Google Scholar 

  • Papanek B, Biswas R, Rydzak T, Guss AM (2015) Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Metab Eng 32:49–54

    Article  CAS  PubMed  Google Scholar 

  • Park Y-C, Oh EJ, Jo J-H, Jin Y-S, Seo J-H (2016) Recent advances in biological production of sugar alcohols. Curr Opin Biotechnol 37:105–113

    Article  CAS  PubMed  Google Scholar 

  • Peitersen N (1975) Cellulase and protein production from mixed cultures of Trichoderma viride and a yeast. Biotechnol Bioeng 17(9):1291–1299

    Article  CAS  PubMed  Google Scholar 

  • Pessani NK, Atiyeh HK, Wilkins MR, Bellmer DD, Banat IM (2011) Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: the effect of enzyme loading, temperature and higher solid loadings. Bioresour Technol 102(22):10618–10624

    Article  CAS  PubMed  Google Scholar 

  • Puseenam A, Tanapongpipat S, Roongsawang N (2015) Co-expression of endoxylanase and endoglucanase in Scheffersomyces stipitis and its application in ethanol production. Appl Biochem Biotechnol 177(8):1690–1700

    Article  CAS  PubMed  Google Scholar 

  • Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91

    Article  CAS  PubMed  Google Scholar 

  • Riscaldati E, Moresi M, Federici F, Petruccioli M (2000) Direct ammonium fumarate production by Rhizopus arrhizus under phosphorous limitation. Biotechnol Lett 22(13):1043–1047

    Article  CAS  Google Scholar 

  • Riyaz-Ul-Hassan S, Strobel G, Geary B, Sears J (2013) An endophytic Nodulisporium sp. from central America producing volatile organic compounds with both biological and fuel potential. J Microbiol Biotechnol 23(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Rowlands WN, Masters A, Maschmeyer T (2008) The biorefinery—challenges, opportunities, and an Australian perspective. Bull Sci Technol Soc 28(2):149–158

    Article  Google Scholar 

  • Rumbold K, van Buijsen H, Overkamp K, van Groenestijn J, Punt P, Werf M (2009) Microbial production host selection for converting second-generation feedstocks into bioproducts. Microb Cell Fact 8(1):64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saha BC, Qureshi N, Kennedy GJ, Cotta MA (2016) Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. Int Biodeterior Biodegradation 109:29–35

    Article  CAS  Google Scholar 

  • Sànchez Nogué V, Karhumaa K (2015) Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnol Lett 37(4):761–772

    Article  PubMed  CAS  Google Scholar 

  • Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidl V, Seiboth B (2010) Trichoderma reesei: genetic approaches to improving strain efficiency. Biofuels 1(2):343–354

    Article  CAS  Google Scholar 

  • Sims RE, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580

    Article  CAS  PubMed  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kumar P (1991) Fusarium oxysporum: status in bioethanol production. Crit Rev Biotechnol 11(2):129–147

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Kumar P, Schügerl K (1992). Bioconversion of cellulosic materials to ethanol by filamentous fungi. Enzymes and products from bacteria fungi and plant cells, vol 45. Springer, Berlin Heidelberg, pp 29–55

    Google Scholar 

  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315(5813):801–804

    Article  CAS  PubMed  Google Scholar 

  • Strobel G (2011) Muscodor species- endophytes with biological promise. Phytochem Rev 10(2):165–172

    Article  CAS  Google Scholar 

  • Strobel GA (2015) Bioprospecting—fuels from fungi. Biotechnol Lett 37(5):973–982

    Article  CAS  PubMed  Google Scholar 

  • Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM (2008) Simultaneous saccharification and fermentation of Kanlow switchgrass pretreated by hydrothermolysis using Kluyveromyces marxianus IMB4. Biotechnol Bioeng 101(5):894–902

    Article  CAS  PubMed  Google Scholar 

  • Szczodrak J (1988) Enzymatic hydrolysis and fermentation of pretreated wheat straw to ethanol. Biotechnol Bioeng 32(6):771–776

    Article  CAS  PubMed  Google Scholar 

  • Szczodrak J (1989) Use of cellulases from a β-glucosidase-hyperproducing mutant of Trichoderma reesei in simultaneous saccharification and fermentation of wheat straw. Biotechnol Bioeng 33(9):1112–1116

    Article  CAS  PubMed  Google Scholar 

  • Tomás-Pejó E, Oliva JM, González A, Ballesteros I, Ballesteros M (2009) Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel 88(11):2142–2147

    Article  CAS  Google Scholar 

  • Ulber R, Sieker T, Tippkötter N, Bart HJ, Dimitrova D, Heinzle E, Neuner A (2010) Grassilage als Rohstoff für die chemische Industrie. Chem Ing Tech 82(8):1153–1159

    Article  CAS  Google Scholar 

  • Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480

    Article  PubMed  CAS  Google Scholar 

  • van Zyl W, Lynd L, den Haan R, McBride J (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. In: Olsson L (ed) Biofuels, vol 108. Springer, Berlin Heidelberg, pp 205–235

    Chapter  Google Scholar 

  • Vially G, Marchal R, Guilbert N (2009) L(+) Lactate production from carbohydrates and lignocellulosic materials by Rhizopus oryzae UMIP 4.77. World J Microbiol Biotechnol 26(4):607–614

    Article  CAS  Google Scholar 

  • Vijayakumar J, Aravindan R, Viruthagiri T (2008) Recent trends in the production, purification and application of lactic acid. Chem Biochem Eng Q 22(2):245–264

    CAS  Google Scholar 

  • Vinuselvi P, Lee SK (2012) Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Enzyme Microb Technol 50(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Wagner JM, Alper HS (2015) Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol

    Google Scholar 

  • Wang G, Huang D, Li Y, Wen J, Jia X (2015) A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae. Bioresour Technol 180:119–127

    Article  CAS  PubMed  Google Scholar 

  • West TP (2011) Malic acid production from thin stillage by Aspergillus species. Biotechnol Lett 33(12):2463–2467

    Article  CAS  PubMed  Google Scholar 

  • Wikandari R, Millati R, Lennartsson PR, Harmayani E, Taherzadeh MJ (2012) Isolation and characterization of zygomycetes fungi from tempe for ethanol production and biomass applications. Appl Biochem Biotechnol 167(6):1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Wu JF, Lastick SM, Updegraff DM (1986) Ethanol production from sugars derived from plant biomass by a novel fungus. Nature 321:887–888

    Article  CAS  Google Scholar 

  • Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20(3):364–371

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Qin Y, Li Y, Ji Y, Huang J, Song H, Xu J (2010a) Factors influencing cellulosome activity in consolidated bioprocessing of cellulosic ethanol. Bioresour Technol 101(24):9560–9569

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Li S, Fu Y, Tai C, Huang H (2010b) Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresour Technol 101(15):6262–6264

    Article  CAS  PubMed  Google Scholar 

  • Yee KL, Rodriguez M Jr, Thompson OA, Fu C, Wang Z-Y, Davison BH, Mielenz JR (2014) Consolidated bioprocessing of transgenic switchgrass by an engineered and evolved Clostridium thermocellum strain. Biotechnol Biofuels 7(1):1–6

    Article  CAS  Google Scholar 

  • Yuan WJ, Zhao XQ, Ge XM, Bai FW (2008) Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater. J Appl Microbiol 105(6):2076–2083

    Article  CAS  PubMed  Google Scholar 

  • Yuan WJ, Chang BL, Ren JG, Liu JP, Bai FW, Li YY (2012) Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions. J Appl Microbiol 112(1):38–44

    Article  CAS  PubMed  Google Scholar 

  • Yuan W-J, Li N-N, Zhao X-Q, Chen L-J, Kong L, Bai F-W (2013a) Engineering an industrial Saccharomyces cerevisiae strain with the inulinase gene for more efficient ethanol production from Jerusalem artichoke tubers. Eng Life Sci 13(5):472–478

    Article  CAS  Google Scholar 

  • Yuan W, Zhao X, Chen L, Bai F (2013b) Improved ethanol production in Jerusalem artichoke tubers by overexpression of inulinase gene in Kluyveromyces marxianus. Biotechnol Bioprocess Eng 18(4):721–727

    Article  CAS  Google Scholar 

  • Zerva AP, Stathopoulou PM, Katsifas EA, Karagouni AD, Hatzinikolaou DG (2012) The filamentous fungus Paecilomyces variotii as a potential candidate for bioethanol production via consolidated bioprocessing of lignocellulosics. New Biotechnol 29S:S5

    Article  Google Scholar 

  • Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 35(3):251–263

    Article  CAS  Google Scholar 

  • Zhang GC, Liu JJ, Kong II, Kwak S, Jin YS (2015a) Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr Opin Chem Biol 29:49–57

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Li X, Yong Q, Yang S-T, Ouyang J, Yu S (2015b) Simultaneous saccharification and fermentation of xylo-oligosaccharides manufacturing waste residue for l-lactic acid production by Rhizopus oryzae. Biochem Eng J 94:92–99

    Article  CAS  Google Scholar 

  • Zhou Y, Du J, Tsao GT (2000) Mycelial pellet formation by Rhizopus oryzae ATCC 20344. Appl Biochem and Biotechnol Part A Enzyme Eng Biotechnol 84–86:779–789

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris G. Hatzinikolaou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Galanopoulou, A.P., Hatzinikolaou, D.G. (2016). Fungi in Consolidated Bioprocessing of Lignocellulosic Materials. In: Purchase, D. (eds) Fungal Applications in Sustainable Environmental Biotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42852-9_11

Download citation

Publish with us

Policies and ethics