Skip to main content

Fungi in Composting

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Fungi are well adapted for decomposition processes due to their filamentous growth, extracellular nutrition, and enzymatic capacities. As such, fungi are essential to composting for degrading recalcitrant compounds, stabilizing organic matter, as well as releasing nutrients and essential elements that are beneficial for plant growth and fertility. Here we discuss different composting processes and their associated fungi. We first discuss current research on municipal composting and vermicomposting, and then the history and science of composting for cultivating mushrooms, particularly Agaricus bisporus. At the conclusion of this chapter, we discuss mycoaugmented composts and their use in remediating soils contaminated with a variety of organopollutants and xenobiotic compounds, an area of growing interest and investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasi SA, Nayeem-Shah M, Abbasi T (2015) Vermicomposting of phytomass: limitations of the past approaches and the emerging directions. J Clean Prod 93:103–114

    Article  Google Scholar 

  • Agrawal PK (2014) Microbial ecology of compost ecosystem: with special reference to mushroom compost. J Biol Sci Opin 2:45–50

    Article  Google Scholar 

  • Aira M, Monroy F, Domínguez J (2006) Eisenia fetida (Oligochaeta, Lumbricidae) activates fungal growth, triggering cellulose decomposition during vermicomposting. Microb Ecol 52:738–747

    Article  PubMed  Google Scholar 

  • Aira M, Monroy F, Domínguez J (2007) Eisenia fetida (Oligochaeta: Lumbricidae) modifies the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pig manure. Microb Ecol 54:662–671

    Article  PubMed  Google Scholar 

  • Alexander M (1995) How toxic are toxic chemicals in soil? Environ Sci Technol 29:2713–2717

    Article  CAS  PubMed  Google Scholar 

  • Alfreider A, Peters S, Tebbe CC, Rangger A, Insam H (2002) Microbial community dynamics during composting of organic matter as determined by 16S ribosomal DNA analysis. Compost Sci Util 10:303–312

    Article  Google Scholar 

  • Anastasi A, Varese GC, Voyron S, Scannerini S, Marchisio VF (2004) Characterization of fungal biodiversity In compost and vermicompost. Compost Sci Util 12:185–191

    Article  Google Scholar 

  • Anastasi A, Varese GC, Marchisio VF (2005) Isolation and identification of fungal communities in compost and vermicompost. Mycologia 97:33–44

    Article  PubMed  Google Scholar 

  • Anastasi A, Varese GC, Bosco F, Chimirri F, Marchisio VF (2008) Bioremediation potential of basidiomycetes isolated from compost. Bioresour Technol 99:6626–6630

    Article  CAS  PubMed  Google Scholar 

  • Anastasi A, Coppola T, Prigione V, Varese GC (2009) Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: role of laccases and peroxidases. J Hazard Mater 165:1229–1233

    Article  CAS  PubMed  Google Scholar 

  • Andaluri G, Suri RPS, Kumar K (2012) Occurrence of estrogen hormones in biosolids, animal manure and mushroom compost. Environ Monit Assess 184:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91

    Article  CAS  Google Scholar 

  • Barr DP, Aust SD (1994) Effect of superoxide and superoxide dismutase on lignin peroxidase-catalyzed veratryl alcohol oxidation. Arch Biochem Biophys 311:378–382

    Article  CAS  PubMed  Google Scholar 

  • Barrett TJ (1948) Harnessing the earthworm. A practical inquiry into soil-building, soil-conditioning, and plant nutrition through the action of earthworms, with instructions for intensive propagation and use of domesticated earthworms in biological soil-building. Q Rev Biol 23:361–361

    Google Scholar 

  • Batelle CD (2000) Mushrooms: higher macrofungi to clean up the environment. Environmental Issues, Fall

    Google Scholar 

  • Beffa T, Staib F, Lott Fischer J, Lyon PF, Gumowski P, Marfenina OE et al (1998) Mycological control and surveillance of biological waste and compost. Med Mycol 36(Suppl 1):137–145

    PubMed  Google Scholar 

  • Bennett JW (1994) Prospects for fungal bioremediation of TNT munition waste. Int Biodeterior Biodegradation 34:21–34

    Article  CAS  Google Scholar 

  • Bhatt M, Cajthaml T, Sasek V (2002) Mycoremediation of PAH-contaminated soil. Folia Microbiol 47:255–258

    Article  CAS  Google Scholar 

  • Boileau J, Fauquignon C, Hueber B. (2000). Explosives. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  • Bonito G, Isikhuemhen OS, Vilgalys R (2010) Identification of fungi associated with municipal compost using DNA-based techniques. Bioresour Technol 101:1021–1027

    Article  CAS  PubMed  Google Scholar 

  • Boominathan K, Reddy CA (1992) Fungal degradation of lignin: biotechnological applications. In: Arora DK, Elander RP & Mukerji KG (eds), Handbook of applied mycology, vol 4. Fungal biotechnology. Marcel Dekker, Inc., New York, N.Y, p 763–822

    Google Scholar 

  • Boswell GP, Jacobs H, Davidson FA, Gadd GM, Ritz K (2002) Functional consequences of nutrient translocation in mycelial fungi. J Theor Biol 217:459–477

    Article  CAS  PubMed  Google Scholar 

  • Bouché MB (1987) Emergence and development of vermiculture and vermicomposting from a hobby to an industry, from marketing to a biotechnology from irrational to credible practices. In: Selected Symposia and Monographs UZI, pp. 519–531

    Google Scholar 

  • Bouwman H (1998) Evaluation of a technique to obtain development-stage-synchronised earthworms (Eisenia fetida). Biol Fertil Soils 27:368–373

    Article  Google Scholar 

  • Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? The significance and regulation of soil biodiversity. Springer, Netherlands, pp 247–269

    Chapter  Google Scholar 

  • Brown GC, Doube BM (2004) Functional interactions between earthworms, microorganisms, organic matter, and plants. Earthworm ecology. In: Ewards CA (ed) Earthworm ecology. CRC Press LLC, Boca Raton, FL, USA, pp 213–239

    Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    Article  CAS  PubMed  Google Scholar 

  • Cahyani VR, Matsuya K, Asakawa S, Kimura M (2004) Succession and phylogenetic profile of eukaryotic communities in the composting process of rice straw estimated by PCR-DGGE analysis. Biol Fertil Soils 40:334–344

    Article  CAS  Google Scholar 

  • Chang S-T (2006) Development of the culinary—medicinal mushrooms industry in China: Past, present, and future. Int J Med Mush. 8, doi:10.1615/IntJMedMushr.v8.i1.10

    Google Scholar 

  • Chang S-T, Miles PG (1989) Edible mushrooms and their cultivation. CRC Press LLC, Boca Raton, FL, USA

    Google Scholar 

  • Chen Y, Chefetz B, Rosario R, van Heemst JDH, Romaine CP, Hatcher PG (2000) Chemical nature and composition of compost during mushroom Growth. Compost Sci Util 8:347–359

    Article  Google Scholar 

  • Chiu SW, Chan YH, Law SC, Cheung KT, Moore D (1998) Cadmium and manganese in contrast to calcium reduce yield and nutritional values of the edible mushroom Pleurotus pulmonarius. Mycol Res 102:449–457

    Article  CAS  Google Scholar 

  • Cooke J (1983) The effects of fungi on food selection by Lumbricus terrestris L. Earthworm ecology. Springer, Netherlands, pp 365–373

    Chapter  Google Scholar 

  • Craig HD, Sisk WE, Nelson MD, Dana WH (1995) Bioremediation of explosives-contaminated soils: A status review. 10th annual conference on hazardous waste research. Manhattan, Kans, pp 168–179

    Google Scholar 

  • Darwin C (1892) The formation of vegetable mould, through the action of worms, with observations on their habits. London: John Murray. 7th thousand. Corrected by Francis Darwin

    Google Scholar 

  • Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Day M, Shaw K, Stofella P, Kahn B (2001) Biological, chemical and physical processes of composting. Compost utilization in horticultural cropping systems, Lewis Publishers, Boca Raton, FL, USA, pp 17–50

    Google Scholar 

  • De Bertoldi M, Vallini G, Pera A (1983) The biology of composting: a review. Waste Manag Res 1:157–176

    Article  Google Scholar 

  • De Gannes V, Eudoxie G, Hickey WJ (2013) Insights into fungal communities in composts revealed by 454-pyrosequencing: implications for human health and safety. Front Microbiol 4:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Doube BM, Brown GG (1998) Life in a complex community: functional interactions between earthworms, organic matter, microorganisms, and plants. In: Edwards CA (ed) Earthworm Ecology. CRC Press, Boca Raton, FL, pp 179–211

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Springer Science and Business Media

    Google Scholar 

  • Edwards CA, Fletcher KE (1988) Interactions between earthworms and microorganisms in organic-matter breakdown. Agric Ecosyst Environ 24:235–247

    Article  Google Scholar 

  • Edwards CA, Arancon NQ, Sherman RL (2010) Vermiculture technology: earthworms, organic wastes, and environmental management. CRC press

    Google Scholar 

  • Eggen T (1999) Application of fungal substrate from commercial mushroom production—Pleuorotus ostrearus—for bioremediation of creosote contaminated soil. Int Biodeterior Biodegradation 44:117–126

    Article  CAS  Google Scholar 

  • Fernando T, Aust SD (1994) Biodegradation of toxic chemicals by white rot fungi. In: Chaudhry GR (ed) Biological degradation and bioremediation of toxic chemicals London. Chapman and Hall, London, pp 386–402

    Google Scholar 

  • Fernando T, Bumpus JA, Aust SD (1990) Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1666–1671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B et al (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    Article  CAS  PubMed  Google Scholar 

  • Gbolagade JS, Fasidi IO, Ajayi EJ, Sobowale AA (2006) Effect of physico-chemical factors and semi-synthetic media on vegetative growth of Lentinus subnudus (Berk.), an edible mushroom from Nigeria. Food Chem 99:742–747

    Article  CAS  Google Scholar 

  • Ghazifard A, Kasra-Kermanshahi R, Far ZE (2001) Identification of thermophilic and mesophilic bacteria and fungi in Esfahan (Iran) municipal solid waste compost. Waste Manag Res 19:257–261

    Article  CAS  PubMed  Google Scholar 

  • Gibbons WR, Maher AA, Todd RL (1991) Button mushroom production in synthetic compost derived from agricultural wastes. Bioresour Technol 38:65–77

    Article  Google Scholar 

  • Guinberteau J, Olivier JM, Tanne MN (1991) Improvement of Lepista species cultivation, technical factors and selection of strains. Mushroom Sci 2:615–621

    Google Scholar 

  • Guo R, Li G, Jiang T, Schuchardt F, Chen T, Zhao Y, Shen Y (2012) Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour Technol 112:171–178

    Article  CAS  PubMed  Google Scholar 

  • Hadar Y, Papadopoulou KK (2012) Suppressive composts: microbial ecology links between abiotic environments and healthy plants. Annu Rev Phytopathol 50(50):133–153

    Article  CAS  PubMed  Google Scholar 

  • Halet D, Boon N, Verstraete W (2006) Community dynamics of methanotrophic bacteria during composting of organic matter. J Biosci Bioeng 101:297–302

    Article  CAS  PubMed  Google Scholar 

  • Hampton ML, Sisk WE (1997) Environmental stability of windrow composting of explosives-contaminated soils. In: Tedder DW (ed) Emerging technologies in hazardous waste management IX, division of industrial and engineering chemistry. American Society of Chemistry, Washington DC, pp 252–257

    Google Scholar 

  • Hattemer-Frey HA, Travis CC (1989) Pentachlorophenol: environmental partitioning and human exposure. Arch Environ Contam Toxicol 18:482–489

    Article  CAS  PubMed  Google Scholar 

  • Head IM (1998) Bioremediation: towards a credible technology. Microbiology 144:599–608

    Article  CAS  Google Scholar 

  • Heinfling A, Ruiz-Dueñas FJ, Martínez MJ, Bergbauer M, Szewzyk U, Martínez AT (1998) A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428:141–146

    Article  CAS  PubMed  Google Scholar 

  • Hein I (1930) Straw compost for mushroom culture. Mycologia 22:39–43

    Article  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  • Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K, Li F, Wei Y, Chen X, Fu X (2013) Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida. Bioresour Technol 150:235–241

    Article  CAS  PubMed  Google Scholar 

  • Ivors KL, Collopy PD, Beyer DM, Kang S (2000) Identification of bacteria in mushroom compost using ribosomal RNA sequence. Compost Sci Util 8:247–253

    Article  Google Scholar 

  • Jurak E, Punt AM, Arts W, Kabel MA, Gruppen H (2015) Fate of carbohydrates and lignin during composting and mycelium growth of Agaricus bisporus on wheat straw based compost. PLoS ONE 10:e0138909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaplan DL (1992) Biological degradation of explosives and chemical agents. Curr Opin Biotechnol 3:253–260

    Article  CAS  Google Scholar 

  • Kilbane JJ II (1998) Extractability and subsequent biodegradation of PAHs from contaminated soil. Water Air Soil Pollut Focus 104:285–304

    Article  CAS  Google Scholar 

  • Kostecka J, Blazej JB, Kolodziej M (1996) Investigations on application of vermicompost in potatoes farming in second year of experiment. Zeszyty Naukowe Akademii Rolniczej W Krakowie 310:69–77

    Google Scholar 

  • Koster IW, Brons HJ (1984) Respirometric testing method for biodegradability of xenobiotics using compost. J Environ Sci Health B 19:785–792

    Article  Google Scholar 

  • Kunamneni A, Ballesteros A, Plou FJ, Alcalde M (2007) Fungal laccase—a versatile enzyme for biotechnological applications. Commun Curr Res Educ Top Trends Appl Microbiol 1:233–245

    Google Scholar 

  • Lambert EB (1929) The production of normal sporophores in monosporous cultures of Agaricus campestris. Mycologia 21:333–335

    Article  Google Scholar 

  • Lambert EB (1941) Studies on the preparation of mushroom compost. J Agric Res 415–422

    Google Scholar 

  • Lau KL, Tsang YY, Chiu SW (2003) Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer Scientific, Amsterdam

    Book  Google Scholar 

  • López-González JA, Vargas-García MDC, López MJ, Suárez-Estrella F, Jurado MDM, Moreno J (2015) Biodiversity and succession of mycobiota associated to agricultural lignocellulosic waste-based composting. Bioresour Technol 187:305–313

    Article  PubMed  CAS  Google Scholar 

  • Lo SC, Ho YS, Buswell JA (2001) Effect of phenolic monomers on the production of laccases by the edible mushroom pleurotus sajor-caju, and partial characterization of a major laccase component. Mycologia 93:413–421

    Article  CAS  Google Scholar 

  • Malandraki I, Tjamos SE, Pantelides IS, Paplomatas EJ (2008) Thermal inactivation of compost suppressiveness implicates possible biological factors in disease management. Biol Control 44:180–187

    Article  Google Scholar 

  • Marshall MN, Cocolin L, Mills DA, VanderGheynst JS (2003) Evaluation of PCR primers for denaturing gradient gel electrophoresis analysis of fungal communities in compost. J Appl Microbiol 95:934–948

    Article  CAS  PubMed  Google Scholar 

  • Mehta CM, Palni U, Franke-Whittle IH, Sharma AK (2014) Compost: its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag 34:607–622

    Article  CAS  PubMed  Google Scholar 

  • Miller FC (1992) Composting as a process based on the control of ecologically selective factors. In: Metting FB Jr (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker Inc, New York, pp 515–544

    Google Scholar 

  • Miller FC, Harper ER, Macauley BJ, Gulliver A (1990) Composting based on moderately thermophilic and aerobic conditions for the production of commercial mushroom growing compost. Aust J Exp Agric 30:287–296

    Article  Google Scholar 

  • Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagy LG et al (2012) Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci USA 109:17501–17506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortimer PE, Karunarathna SC, Li QH, Gui H, Yang XQ, Yang XF et al (2012) Prized edible Asian mushrooms: ecology, conservation and sustainability. Fungal Divers 56:31–47

    Article  Google Scholar 

  • Nada WM (2015) Stability and maturity of maize stalks compost as affected by aeration rate, C/N ratio and moisture content. J Soil Sci Plant Nutr 15(3):751–764

    Google Scholar 

  • Natvig DO, Taylor JW, Tsang A, Hutchinson MI, Powell AJ (2015) Mycothermus thermophilus gen. et comb. nov., a new home for the itinerant thermophile Scytalidium thermophilum (Torula thermophila). Mycologia 107:319–327

    Article  PubMed  Google Scholar 

  • Neher DA, Weicht TR, Bates ST, Leff JW, Fierer N (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS ONE 8:e79512

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicholas LG, Ogame K (2006) Psilocybin mushroom handbook: easy indoor and outdoor cultivation. Ed Rosenthal

    Google Scholar 

  • Noble R, Gaze RH (1994) Controlled environment composting for mushroom cultivation: substrates based on wheat and barley straw and deep litter poultry manure. J Agric Sci 123:71–79

    Article  Google Scholar 

  • Noble R, Hobbs PJ, Mead A, Dobrovin-Pennington A (2002) Influence of straw types and nitrogen sources on mushroom composting emissions and compost productivity. J Ind Microbiol Biotechnol 29:99–110

    Article  CAS  PubMed  Google Scholar 

  • Okeke BC, Smith JE, Paterson A, Watson-Craik IA (1993) Aerobic metabolism of pentachlorophenol by spent sawdust culture of “Shiitake” mushroom (Lentinus edodes) in soil. Biotechnol Lett 15:1077–1080

    Google Scholar 

  • Okparanma RN, Ayotamuno JM, Davis DD, Allagoa M (2013) Mycoremediation of polycyclic aromatic hydrocarbons (PAH)-contaminated oil-based drill-cuttings. Afr J Biotechnol 10:5149–5156

    Google Scholar 

  • Oliver GS (1949) Our friend, the earthworm. Organic Gardening

    Google Scholar 

  • Pennington JC, Hayes CA, Myers KF, Ochman M, Gunnison D, Felt DR et al (1995) Fate of 2, 4, 6-trinitrotoluene in a simulated compost system. Chemosphere 30:429–438

    Article  CAS  Google Scholar 

  • Peters S, Koschinsky S, Schwieger F, Tebbe CC (2000) Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol 66:930–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pižl V, Nováková A (2003) Interactions between microfungi and Eisenia andrei (Oligochaeta) during cattle manure vermicomposting: the 7th international symposium on earthworm ecology. Pedobiologia 47:895–899

    Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  PubMed  Google Scholar 

  • Pramanik P (2010) Changes in microbial properties and nutrient dynamics in bagasse and coir during vermicomposting: quantification of fungal biomass through ergosterol estimation in vermicompost. Waste Manag 30:787–791

    Article  CAS  PubMed  Google Scholar 

  • Rajapakse JC, Rubasingha P, Dissanayake NN (2010) The potential of using cost-effective compost mixtures for oyster mushroom (Pleurotus spp) cultivation in Sri Lanka. Trop Agric Res Ext 10, doi:10.4038/tare.v10i0.1868

    Google Scholar 

  • Reddy CA (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6:320–328

    Article  CAS  Google Scholar 

  • Rettew FG, Thompson GR (1948) Manual of mushroom culture. Mushroom Supply Company

    Google Scholar 

  • Richard TL, Hamelers (bert) HVM, Veeken A, Silva T (2002) Moisture relationships in composting processes. Compost Sci Util 10:286–302

    Article  Google Scholar 

  • Royse DJ, Chalupa W (2009) Effects of spawn, supplement and phase II compost additions and time of re-casing second break compost on mushroom (Agaricus bisporus) yield and biological efficiency. Bioresour Technol 100:5277–5282

    Article  CAS  PubMed  Google Scholar 

  • Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J et al (2003) A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53:349–410

    Google Scholar 

  • Said-Pullicino D, Erriquens FG, Gigliotti G (2007) Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresour Technol 98:1822–1831

    Article  CAS  PubMed  Google Scholar 

  • Saraswathy A, Hallberg R (2005) Mycelial pellet formation by Penicillium ochrochloron species due to exposure to pyrene. Microbiol Res 160:375–383

    Article  CAS  PubMed  Google Scholar 

  • Šašek V, Volfová O, Erbanová P, Vyas BRM, Matucha M (1993) Degradation of PCBs by white rot fungi, methylotrophic and hydrocarbon utilizing yeasts and bacteria. Biotechnol Lett 15:521–526

    Article  Google Scholar 

  • Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensively mineralizing 2, 4, 6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457

    Article  CAS  PubMed  Google Scholar 

  • Scheuerell S, Mahaffee W (2002) Compost tea: principles and prospects for plant disease control. Compost Sci Util 10:313–338

    Article  Google Scholar 

  • Schönholzer F, Hahn D, Zeyer J (1999) Origins and fate of fungi and bacteria in the gut of Lumbricus terrestris L. studied by image analysis. FEMS Microbiol Ecol 28:235–248

    Article  Google Scholar 

  • Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112:269–283

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Suthar S (2012) Vermicomposting of herbal pharmaceutical industry waste: earthworm growth, plant-available nutrient and microbial quality of end materials. Bioresour Technol 112:179–185

    Article  CAS  PubMed  Google Scholar 

  • Singh H (2006) Fungal degradation of polychlorinated biphenyls and dioxins. In: Mycoremediation. John Wiley & Sons, Inc. pp 149–180

    Google Scholar 

  • Sinsabaugh RL (2005) Fungal enzymes at the community scale. Mycology Ser 23:349

    Article  CAS  Google Scholar 

  • Straatsma G, Olijnsma TW, Gerrits JPG, Griensven LJLDV, Samson RA, Camp HJMOD (1995) Bioconversion of cereal straw into mushroom compost. Can J Bot 73:1019–1024

    Article  Google Scholar 

  • Szczech MM (1999) Suppressiveness of vermicompost against Fusarium wilt of tomato. J Phytopathol 147:155–161

    Article  CAS  Google Scholar 

  • Szczech M, Rondomański W, Brzeski MW, Smolińska U, Kotowski JF (1993) Suppressive effect of a commercial earthworm compost on some root infecting pathogens of cabbage and tomato. Biol Agric Hortic 10:47–52

    Article  Google Scholar 

  • Tiunov AV, Scheu S (2000) Microfungal communities in soil, litter and casts of Lumbricus terrestris L. (Lumbricidae): a laboratory experiment. Appl Soil Ecol 14:17–26

    Article  Google Scholar 

  • Vijay B, Sharma SR, Lakhanpal TN (2002) Role of thermophilic fungi in compost production for Agaricus bisporus. J Mycol Plant Pathol 32:204–210

    Google Scholar 

  • Viti C, Tatti E, Decorosi F, Lista E, Rea E, Tullio M et al (2010) Compost effect on plant growth-promoting rhizobacteria and mycorrhizal fungi population in maize cultivations. Compost Sci Util 18:273–281

    Article  Google Scholar 

  • Waksman SA (1932) Mushroom nutrition: a group of problems in microbiology. J Bacteriol 23:81

    Google Scholar 

  • Waksman SA, Nissen W (1932) On the nutrition of the cultivated mushroom, Agaricus campestris, and the chemical changes brought about by this organism in the manure compost. Am J Bot 19:514–537

    Article  CAS  Google Scholar 

  • Waksman SA, Reneger CA (1934) Artificial manure for mushroom production. Mycologia 26:38–45

    Article  Google Scholar 

  • Waksman SA, Umbreit WW, Cordon TC (1939) Thermophilic actinomycetes and fungi in soils and in composts. Soil Sci 47:37–61

    Article  CAS  Google Scholar 

  • Wiegant WM, Wery J, Buitenhuis ET, de Bont JA (1992) Growth-promoting effect of thermophilic fungi on the mycelium of the edible mushroom Agaricus bisporus. Appl Environ Microbiol 58:2654–2659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan SY, Chang JS, Yen JH, Chang BV (2001) Biodegradation of phenanthrene in river sediment. Chemosphere 43:273–278

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Huang D, Huang G, Hu T, Jiang X, Feng C et al (2007) Composting of lead-contaminated solid waste with inocula of white-rot fungus. Bioresour Technol 98:320–326

    Article  CAS  PubMed  Google Scholar 

  • Zhang B-G, Li G-T, Shen T-S, Wang J-K, Sun Z (2000) Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida. Soil Biol Biochem 32:2055–2062

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Bonito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wright, C., Gryganskyi, A.P., Bonito, G. (2016). Fungi in Composting. In: Purchase, D. (eds) Fungal Applications in Sustainable Environmental Biotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42852-9_1

Download citation

Publish with us

Policies and ethics